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ABSTRACT

As standards and accountability have become an increasingly prominent feature of the

educational landscape, educators have relied more on remedial programs such as summer school and

grade retention to help low-achieving students meet minimum academic standards.  Yet the evidence on

the effectiveness of such programs is mixed, and prior research suffers from selection bias. However,

recent school reform efforts in Chicago provide an opportunity to examine the causal impact of these

remedial education programs.  In 1996, the Chicago Public Schools instituted an accountability policy

that tied summer school and promotional decisions to performance on standardized tests, which resulted

in a highly non-linear relationship between current achievement and the probability of attending summer

school or being retained.  Using a regression discontinuity design, we find that the net effect of these

programs was to substantially increase academic achievement among third graders, but not sixth graders.

In addition, contrary to conventional wisdom and prior research, we find that retention increases

achievement for third grade students and has little effect on math achievement for sixth grade students.
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I. Introduction

 

 Education is one of the most important avenues through which governments can address 

concerns of economic growth and equity.  Human capital plays a substantial role in the economic 

growth of nations (Topel 1999) and, in the past two decades, skill biased technical change has 

increased the returns to schooling, exacerbating wage inequality between the most and least 

educated members of our society (Katz and Murphy 1992).  At the same time, cognitive ability 

has become an increasingly important determinant of labor market success in this country 

(Murnane et al. 1995).   

 Aware of the importance of education, economists have spent considerable effort 

examining what factors affect academic achievement.  There is a large literature on the 

importance of financial resources in determining educational outcomes.1  However, researchers 

have paid considerably less attention to remedial programs designed to improve the performance 

of low achieving students, including summer school and grade retention (Eide and Showalter 

forthcoming). 

Such policies, however, have become increasingly popular in recent years.  Sixteen states 

provide funding for districts that institute summer programs, require summer school attendance 

for students who do not meet academic expectations or require districts to offer summer school 

to low achieving students (ECS 2000).  In the summer of 1999, New York City provided summer 

help for 70,000 students and Chicago required over 30,000 low-achieving students to attend 

summer classes.  Other urban districts with summer programs include Houston, with 8,000 

students enrolled; Boston, with 6,500; Denver, with 6,000; Los Angeles, with 139,000; and the 



 

District of Columbia, with 30,000 (Pipho 1999).  There is a growing interest in grade retention as 

well.  Nineteen states explicitly tie student promotion to performance on a state or district 

assessment (ECS 2000).  The largest school districts in the country, including New York City, 

Los Angeles, Chicago and Washington D.C., have recently implemented policies requiring 

students to repeat a grade when they do not demonstrate sufficient mastery of basic skills. 

Despite their popularity, these practices—particularly grade retention—remain 

controversial.  Prior research suggests that summer school has a substantial positive effect on 

student learning in the short-run, but there is less evidence regarding the sustainability of 

achievement gains made during the summer.  In contrast, the majority of retention studies find 

that the practice of requiring students to repeat a grade decreases self-esteem, school adjustment, 

and academic achievement, and increases dropout rates.  However, prior studies fail to account 

for the selection of students into these programs, thus potentially overstating the benefits of 

summer school and exaggerating the harm of retention. 

In this paper, we use a regression discontinuity design to examine the causal effect of 

summer school and grade retention on student achievement.  In 1996, the Chicago Public 

Schools (CPS) instituted an accountability policy that tied summer school attendance and 

promotional decisions to performance on standardized tests, which resulted in a highly non-linear 

relationship between current achievement and the probability of attending summer school or 

being retained.2  We use the exogenous variation generated by the decision rule to identify the 

impact of these remedial programs. 

                                                                                                                                                                           
1 Hanushek (1996) and Hedges and Greenwald (1996) present contrasting views regarding the effectiveness of 

resources on student achievement.  Many researchers have also focused on the effect of class size on student 

outcomes.  These studies include works by Angrist and Lavy (1999), Krueger (1999), and Hoxby (2000). 
2 In prior work, we have examined the potential motivational effects of these requirements and found that the policy 

increased achievement, particularly among older students (Jacob 2001; Roderick et. al. 2000).  In this analysis, we 



 

We find that summer school increased academic achievement in reading and mathematics 

and that these positive effects remain substantial at least two years following the completion of 

the program.  In contrast to prior studies, we find that retention has no negative consequences on 

the academic achievement of students retained in the third grade—indeed it appears that retention 

may actually increase performance in the short run.  The impact of retention on older students is 

mixed, with no impact on math and a negative effect on reading.3   

The remainder of this paper is organized as follows.  Section 2 reviews the previous 

literature on summer school and grade retention.  Section 3 provides background on the Chicago 

policy.  Section 4 describes our data and Section 5 explains our empirical strategy.  Section 6 

presents findings on the net effect of summer school and retention.  Section 7 presents findings 

on the separate effect of grade retention.  Section 8 examines the independent effect of summer 

school.  Section 9 discusses these findings and concludes.   

 

2.  Previous Literature on Summer School and Grade Retention  

Both summer school and grade retention have a long history within American education, 

dating back to the introduction of mass public education in the mid-nineteenth century (Shepard 

and Smith 1989).  Both practices have been widely implemented and have received considerable 

attention from researchers.  However, prior studies do not adequately address the potential biases 

introduced by the non-random selection into summer school and retention. 

In a detailed synthesis of 93 summer school evaluations, Cooper et. al. (2000) concluded 

that remedial summer programs increased achievement by roughly .25 standard deviations.  

                                                                                                                                                                           
set aside the incentives associated with the policy and instead focus on the direct academic consequences of summer 

school and grade retention for those students who fail to meet the promotional standards.   



 

However, even the most careful of these studies relied on comparisons between students who 

chose to attend summer school with those who chose not to attend.  If the most motivated 

students (or those with the most motivated, supportive parents) attend summer school, then the 

estimated summer school treatment effect will be biased upward.  In addition, these studies do 

not examine whether these benefits are sustained in subsequent years.   

While less consistent than the summer school literature, studies of grade retention have 

generally found that repeating a grade has a negative impact on student outcomes.4  In a survey of 

47 empirical studies with a variety of academic achievement measures, Holmes (1989) found that 

retained students scored 0.19 to 0.31 standard deviations below comparable students who had not 

been retained.  Moreover, a variety of studies have found that retention is associated with an 

increased likelihood of dropping out (Schulz, Toles et al. 1986; Rumberger 1987; Grissom and 

Shepard 1989; Fine 1991; Roderick 1994).  However, selection issues cast doubt on these 

findings as well.  In contrast to summer school, students are not generally given a choice whether 

to repeat a grade, but rather this decision is made by the teacher or school principal on the basis 

of unobservable characteristics (e.g., motivation, maturity, parental involvement, etc.).  This 

suggests that OLS estimates of grade retention will be biased downward. 

3.  Background on Chicago’s Social Promotion Policy 

An accountability policy recently implemented in Chicago provides an opportunity to 

more carefully examine the impacts of these programs.  In 1996-97, Chicago instituted a policy 

to end social promotion – the practice of passing students to the next grade regardless of their 

                                                                                                                                                                           
3 However, as we discuss below, the negative effects for sixth grade students may be due to differential test 

incentives faced by retained and promoted students. 
4 Several recent studies have found moderate, positive effects of retention  (Karweit 1991; Pierson and Connell 1992; 

Alexander, Entwisle et al. 1994; Eide and Showalter forthcoming; Dworkin, Lorence et al. 1999). 



 

academic skills or school performance.  Under the policy, students in third, sixth and eighth 

grade are required to perform at predefined levels in both reading and mathematics in order to be 

promoted to the next grade.  For example, third graders must obtain a minimum score of 2.8 

grade equivalents in both reading and math achievement on the Iowa Test of Basic Skills (ITBS) 

in order to advance.5  In 1997, the promotion standards for third, sixth and eighth grade were 2.8, 

5.3, and 7.0 respectively, which roughly corresponded to the 20th percentile in the national 

achievement distribution.6  Students who do not meet the standard in June are required to attend 

a six-week summer school program, after which they can retake the exams.  Those who pass the 

August exams move on to the next grade.  Students who again fail are required to repeat the 

grade.7  Figure 1 provides a flowchart illustrating the treatments children receive based on their 

June and August test performance.  The policy impacted a large proportion of elementary 

students.  From 1997 to 1999, over 30,000 third graders and over 21,000 sixth graders attended a 

mandatory summer school program and roughly 10 to 20 percent of the eligible students were 

eventually held back. 

There are several reasons to believe that the summer school and grade retention programs 

in Chicago might influence academic achievement.  Classes in summer school were generally 

quite small, often with fewer than 15 students per class.  Principals hand-picked teachers for 

summer school and the CPS provided a highly structured curriculum (including resource 

materials) that teachers were required to follow.  Retention was intended to provide students 

                                                      
5 Grade equivalents are normed so that a student at the 50th percentile in the nation scores at the eighth month of her 

current grade – i.e., an average third grader will score a 3.8. 
6 The CPS has raised the promotional cutoffs several times since 1997.  The eighth grade cutoff was raised to 7.2 in 

1998, 7.4 in 1999 and 7.7 in 2000.  The sixth grade cutoff was raised to 5.5 in 2000.       
7 Students over the age of fifteen who were retained were placed in special “transition” centers. 



 

additional time to master the skills at their current grade level.  The CPS also provided schools 

with additional resources to meet the needs of retained students.   

 

4.  Data 

This study utilizes administrative data from the Chicago Public School system.   Student 

records provide individual level information on test scores and student demographics (race, 

gender, age, guardian, and free lunch eligibility), bilingual and special education status, and 

residential and school mobility.  Unique student identification numbers allow us to follow 

individual students throughout their tenure in the public school system.   School level data 

provides demographic and school resource information, including the racial and socio-economic 

composition at the school.  The outcome measure we use is student scores on the math and 

reading sections of the Iowa Test of Basic Skills (ITBS), a standardized multiple-choice exam 

administered annually to students in grades three to eight.8   

The base sample for this study consists of the cohort of students who were in the third 

and sixth grade from the 1993-1994 school year to the 1998-1999 school years, a total of 402,924 

                                                      
8 ITBS scores are typically reported in terms of grade equivalents, which are normed so that a student at the 50th 

percentile in the nation scores at the eighth month of her current grade – i.e., an average third grader will score a 3.8.  

Grade equivalents, however, present a number of well-know shortcomings for comparisons over time and across 

grade: (1) different forms of the exam are administered each year and can vary in difficulty; (2) grade equivalents are 

not a linear metric, so that a score of 5.3 on level 12 of the exam does not represent the same thing as a score of 5.3 

at level 13; (3) grade equivalents are not linear within test level because the scale spreads out more at the extremes of 

the score distribution.  To mitigate some of these concerns, we use an alternative outcome metric derived from an 

item-response model.  This model assume that the probability that student i answers questions j correctly is a 

function of the student ability and the item difficulty.  In practice, one estimates a simple logit model in which the 

outcome is whether or not student i  correctly answers question j .  The explanatory variables include an indicator 

variable for each question and each student.  The difficulty of the question is given by the coefficient on the 

appropriate indicator variable and the student ability is measured by the coefficient on the student indicator variable.  

The resulting metric is calibrated in terms of logits.  By taking advantage of the common items across different forms 

and levels of the exam, these measures provide an effective way to compare students in different grade levels or 

taking different forms of the exam (Wright and Stone 1979).  We thank the Consortium on Chicago School Research 

for providing the Rasch measures used in this analysis. 

 



 

observations.9  We delete approximately 14 percent of cases that were missing demographic data 

or third (or sixth) grade test scores, leaving a sample of 346,909 students.  Additionally, we drop 

45,534 individuals who were not subject to the promotion policy because they were part of 

bilingual or special education programs.  Finally we exclude an additional 8,080 students who 

left the system or were placed in self-contained special education classes the following year 

because these students cannot be categorized as promoted or retained and generally do not have 

future test scores.   

 Table 1 presents summary statistics for the group of 147,894 students who experienced 

the accountability policy from 1997 to 1999.   Chicago public school students are 

disproportionately minority and extremely low achieving compared with a national sample.  

Roughly 85 percent of Chicago students are black or Hispanic and the same fraction received free 

or reduced price lunches.  Students who are retained are even more likely to be from minority 

backgrounds and low-income families.     

 Given the low achievement levels in the CPS, the promotional policy applied to a 

substantial proportion of students.  Over 40 percent of third graders failed to meet the 

promotional standards from 1997 to 1999 as did about 30 percent of sixth graders.  The reading 

exam proved to be a more difficult hurdle than the math exam, with nearly all students failing 

reading alone or both reading and math.  Even after five to ten percent of students received 

waivers from the policy, 21 percent of third graders and 13 percent of sixth and eighth graders 

were required to repeat a grade.  

 

                                                      
9 Note that we include pre-policy cohorts in our sample.  We will discuss later the reason for this inclusion. 



 

5.  Empirical Strategy 

5.1. Identification 

In order to determine the impact of a remedial education program (or treatment) on 

student achievement, we would like to estimate the following relationship: 

(1)  ( )
1,,,1, ++ +++Β=

tiitititi
uTreatXY εβ , 

where Y is the outcome, X is a vector of demographic and past performance variables, and Treat 

is a binary variable that takes on a value of one if a student receives some type of treatment and 

zero otherwise, u  represents unobserved (to the researcher) student ability, ε  is an error term, 

and t  and i  are time and individual subscripts respectively.  The primary concern is that because 

of selection on the part of students, teachers and parents, 0),cov( ≠uTreat  which will bias OLS 

estimates of the treatment effect. 

However, by tying promotional decisions to performance on standardized tests, the 

Chicago policy created a highly non-linear relationship between a student’s current achievement 

and his or her probability of attending summer school or being retained.  Figure 2 illustrates this 

relationship for third and sixth graders from 1997 to 1999.  Roughly 90 percent of students who 

passed math but scored just below the cutoff in reading received some remedial treatment while 

almost no one who passed math and scored at or above the cutoff in reading attended summer 

school or was retained.   

Assuming that unobservable characteristics do not vary discontinuously around the 

cutoff, the promotional decision rule provides exogenous variation in the treatment.  Because 

treatment is perfectly correlated to observable characteristics, it is orthogonal to unobserved 

characteristics.  One can thus identify the impact of these programs by simply comparing 

students who scored just below and just above the promotional cutoff.  For example, if students 



 

who missed the cutoff (and were thus required to attend summer school) learned much more than 

students who just made the cutoff (and thus avoided summer school), then one might conclude 

that summer school had a positive impact on student achievement.   

This strategy is often referred to as a regression discontinuity design.  In one of the first 

papers to introduce this design, Thistlethwaite and Campbell (1960) utilized the fact that 

National Merit Awards are given on the basis of whether a test score exceeds a threshold to 

estimate the effect of the award on a student’s other scholarship receipt and college aspirations.  

Others that have utilized this technique include Berk and Rauma (1983), Trochim (1984), Black 

(1999), Angrist and Lavy (1999), Hahn et. al. (1999), and Guryon (2000). 

The fundamental assumption behind regression discontinuity techniques is that 

unobserved characteristics vary continuously (around the point of the cutoff) with the observable 

characteristic used to determine treatment.  This assumption may not hold if individuals can 

influence their position relative to the cutoff.  However, we believe that this type of intentional 

manipulation is implausible in our case.  While a student may purposely miss many or all of the 

exam questions, it is unlikely that he or she would have the incentive or ability to marginally 

change her score near the cutoff (e.g., intentionally scoring a 2.7 instead of a 2.8) because of the 

uncertainty regarding both performance and the grading metric.10 

In the case of a sharp discontinuity, where performance exceeding a predetermined 

threshold perfectly predicts treatment, continuity of unobserved characteristics is sufficient to 

allow identification.  In some cases, however, treatment may be partly determined by other 

                                                      
10 Teacher cheating is a more plausible candidate for such intentional manipulation.  There is some evidence that 

cheating has increased as a result of the accountability policies instituted in 1996 and is more common in the 

promotional gate grades (Jacob and Levitt 2001).  As a check on this, we estimated kernel densities of the test score 

distribution pre- and post-policy.  If students could (and chose to) strategically influence their scores or teachers 



 

factors, leading to a “fuzzy” discontinuity.  For example, roughly 3 percent of students who 

scored below the cutoffs in June received waivers from summer school and about 14 percent of 

students in summer school received waivers in August.  In addition, a small percentage of 

students who passed the exams were retained because of course failure or poor attendance.  If 

waivers were distributed randomly, or on the basis of factors that are not correlated with future 

outcomes, then this would not present a problem.  However, students who received waivers 

differ from their peers over several observable characteristics, raising a concern that these 

students differed along unobservable dimensions as well. 

Even with waivers, as long as the probability of treatment changes discontinuously at the 

cutoff, it is possible to determine the treatment effect by comparing mean outcomes of 

individuals in a narrow range on either side of the cutoff.  One merely needs to scale the 

difference in outcomes by the difference in the probability of treatment.  If, however, the 

probability of treatment drops over a range around the cutoff, it may not be possible to identify 

the treatment effect by simply comparing individuals to the left and the right of the cutoff.  We 

can, however, use a broader range of data to identify the effect.  In essence, we can examine 

whether performance drops (rises) in the range of performance where the probability of treatment 

is rapidly changing.  To do so, we need to use data outside of this range to estimate the baseline 

relationship between initial performance and subsequent outcomes.  In this case, we can use an 

instrumental variables strategy in which our instruments are non-linear terms of current test 

scores.  These terms are highly correlated with the probability of treatment (as seen in Figure 1) 

but may not be directly correlated with future achievement.  Because we use only the variation in 

                                                                                                                                                                           
cheated in order to get their students above the cutoff, we would expect a discontinuity around the cutoff post-policy.  

We find no evidence of this. 



 

treatment associated with observable performance, our point estimates should be unaffected by 

the correlation between treatment and unobserved characteristics. 

One drawback of the IV approach described above is that it relies on knowing the 

functional form of the relationship between the outcome variable and the variable that determines 

treatment.  In our case, this is the relationship between current test score and future performance.  

If, for example, the relationship is non-linear around the cutoff but we specify the function as 

linear, then the estimated treatment effect may simply pick up any underlying non-linearity in the 

achievement relationship.  If the discontinuity is relatively sharp, then one can use a relatively 

narrow range of data so that a linear approximation is quite good.  If the probability of treatment 

declines more slowly with observed test score, then we must rely more heavily on our functional 

form assumption.   

We test the validity of this assumption in two ways.  First, we examine the relationship 

between current test scores and future performance prior to the implementation of the 

accountability policy.  Figure 3 shows that this relationship is indeed nearly linear, particularly in 

the range around the promotional cutoff.  Second, we can test the robustness of our estimates by 

including second and third order polynomials of current test scores, in order to capture any 

underlying non-linearity in the functional form.  As we see in the next section, our estimates are 

robust to the inclusion of non-linear terms.     

 

5.2. Estimation 

A simple way to implement a regression discontinuity design is to compare the mean 

achievement gains of students just below the cutoff to those students at the cutoff.  This can be 

represented mathematically with the following expression: ( ) ( )
tCtCtCtC

YYYY ,11,1,1, −+−+ −−− , where 



 

Y  represents mean achievement, the first subscript denotes performance relative to the reading 

cutoff (c indicates students at the cutoff and c-1 denotes students just below the cutoff) and the 

second subscript denotes timing.  Because every individual below the cutoff is not treated and 

some students above the cutoff are treated, we must scale the expression above by the difference 

in the probability of treatment associated with meeting the cutoff.  Doing so yields the following 

difference-in-difference estimator:   

(2)  
( ) ( )

1

,11,1,1,2

−

−+−+

−
−−−

=
cc

tctctctcd

TT

YYYY
β , 

where T  is the mean probability of treatment.  Notice that this difference-in-difference is 

equivalent to an IV estimate in which the only instrument is a dummy that takes on a value of 

one if the student passes the reading cutoff. 

Though students below the cutoff and at the cutoff are similar, they are not identical.  We 

might be worried that any difference in achievement gains between these groups reflects 

differences in initial ability rather than the influence of the treatment.11  To address this concern, 

we can examine the performance of individuals just above the cutoff.  If we assume that the 

typical difference in achievement between students at the cutoff and just below the cutoff is 

similar to the difference in achievement between those just above the cutoff and those at the 

cutoff, we can identify the treatment effect using the third difference estimator below: 

(3)  
( ) ( )[ ] ( ) ( )[ ]

( ) ( )
cccc

tctctctctctctctcd

TTTT

YYYYYYYY

−−−
−−−−−−−

=
+−

++++−+−+

11

,1,,11,1,11,1,1,3β  

                                                      
11 In other words, high ability students may enjoy larger gains than students with lower initial ability. 



 

The third difference is equivalent to an IV estimate in which we control for a linear trend of 

reading ability and instrument for treatment using a dummy that takes on a value of one for 

students who exceed the cutoff. 

 

5.3. Implementing the Estimation Strategy in an IV Framework 

As we mentioned previously, the second and third difference approaches are simply IV 

strategies for estimating the treatment effect.  We will implement the three-difference estimator 

in the following way.  We will assume that our learning equation takes the following form: 

(4)  
tiititititi

uTreatrdgeBXY
,,2,1,1,

)( εββ ++++=+ , 

where Y  is the academic outcome of interest, X is a vector of demographic characteristics, rdge 

is the ITBS reading score, u is unobserved ability, and ε  is an error term.  The first stage is given 

by the following: 

(5)  
tii

p

titititi
urdgeXTreat ,3,2,1,, 1 ηγγγ ++++Γ= , 

where p
1  is a dummy variable that indicates that the reading score is above the cutoff, and η  is 

an error term.  If we included no individual level covariates, this approach would be completely 

equivalent to the three-difference strategy summarized by equation (3).  Implementing this 

approach using IV gives us the flexibility to include student level covariates as a check for the 

robustness of our estimates. 

 For students who passed math and failed reading in June, the probability of being retained 

does not change discontinuously at the cutoff as a function of August reading performance.  

Instead it drops off sharply in a range just below the cutoff that we will refer to as the marginal 

area.  This can be observed in Figures 5 and 6.  The fact that the probability of retention does not 



 

change discontinuously prevents us from using the same first stage relationship given by equation 

(5).  Instead, while examining the retention treatment, we will estimate a first stage relationship 

of the following form: 

(6)  
tiiti

p

ti

p

titi

m

it

m

titititi
urdgerdgerdgeXTreat ,5,,5,4,3,2,1,, 1111 ηγγγγγγ +++++++Γ= , 

where m

1  is a dummy variable that takes on a value of 1 if the student’s reading score is in the 

marginal area and 0 otherwise.  The other variables are as previously described.  Away from the 

cutoff, increases in reading performance appear to have little effect on the probability of 

retention.  This suggests that 
1

γ and
5

γ  are likely to be small.  We interact the dummy variable for 

the marginal area with reading performance to take into account that for students just below the 

cutoff, small increases in performance lead to large reduction in the probability of being retained.  

If this is the case, 
3

γ  should be strongly negative.  The learning equation is equivalent to that in 

equation (4). 

 

6. The Net Effect of Summer School and Grade Retention on Student Achievement 

Our analysis proceeds as follows.  We first utilize the discontinuity created by the 

promotional cutoff associated with the June testing to estimate the net effect of summer school 

and grade retention.  We next take advantage of the August cutoff to estimate the separate effect 

of grade retention, using the sample of students who were assigned to summer school solely on 

the basis of their June reading scores.  For these students, the retention decision depended solely 

on their August reading scores.  Finally, we derive estimates of the separate effect of summer 

school, relying on the estimates of the net and retention effects described above. 



 

The relatively sharp discontinuity between current achievement and the probability of 

attending summer school and possibly being retained permits one to visually identify the 

treatment effect.  If these programs had a substantial net impact on subsequent academic 

achievement, we would expect to see a discontinuous or non-linear change in the average 

achievement level around the promotional policy cutoff.  By plotting the probability of receiving 

some remedial treatment (summer school and retention) and future achievement against current 

test performance, Figures 4 and 5 allow this visual identification.12  Each figure shows three 

relationships: (a) the probability of receiving remedial treatment (summer school or retention); 

(b) the reading performance of students in the following year; and (c) the math performance in 

the following year.   

 For example, in Figure 4, we see that the probability of attending summer school and 

being retained drops sharply at the cutoff for promotion in the third grade.  At the same time, 

next year reading and math achievement drop sharply around the cutoff, suggesting that summer 

school and retention had a net positive effect for third graders.  In contrast to third grade, the 

continuous linear trends in future performance among sixth graders (in Figure 5) suggest that the 

summer school and retention had no substantial effect on the performance of students near the 

cutoff. 

 Though the graphs lend transparency to the analysis, it is important to quantify the 

magnitude and the statistical precision of the estimates.  We examine the subset of the student 

population for which only the reading cutoff is binding (i.e., students who passed math and only 

                                                      

12 Note that these graphs reduce the dimensionality of the problem by limiting the sample to students who passed the 

standards in math.  The thinness of data in some cells makes identification off of three-dimensional graphs quite 

difficult. 



 

need to pass reading to avoid treatment).13  Unless otherwise mentioned, the sample includes 

students who were in the third or sixth grades in 1997, 1998, or 1999.  For all specifications, we 

include year fixed effects. 

 The results in Table 2 correspond to the effects displayed in Figures 4 and 5.  The first 

column presents OLS results and the second column shows the IV results associated with the 

third difference specification described earlier.  We see that there are no statistically significant 

differences between the OLS and IV estimates, although the IV point estimates tend to be 

somewhat larger than the OLS estimates.  This suggests that June waivers were given randomly 

or on the basis of characteristics that were uncorrelated with future performance (to the extent 

that the IV estimates are in fact larger, one would conclude that waivers were given to students 

with positive unobservable characteristics).  Column 3 shows IV estimates that control for a 

detailed set of student characteristics, including prior math and reading test scores, race gender, 

special education status, neighborhood poverty and free lunch status.  The estimates in columns 2 

and 3 are virtually identical, providing additional evidence that our instruments may be valid.        

  Summer school and grade retention have a positive net impact on third grade 

achievement in math as well as reading.  In the first year, this effect was roughly 0.11-0.13 logits 

in the context of average third grade achievement gains of 0.68 and 0.42 logits in math and 

reading respectively.  This means that summer school and grade retention increased student 

achievement roughly 20 percent of a year’s worth of learning.  By the second year after the 

program, the effects had faded by roughly 25 to 40 percent, but were still statistically significant.  

This is consistent with the fadeout of program effects found in other evaluations (Barnett 1995).  

                                                      

13 We focus on students for whom the reading cutoff was binding because many more students failed on the account 

of reading than mathematics.  In Table 3, we show results for students who passed reading and for whom the math 

cutoff was binding. 



 

In sixth grade, the picture is much different.  It appears that the net effect of summer school and 

grade retention for these older students was essentially zero in reading, and close to zero in 

mathematics, particularly by year two.   

 Table 3 examines the robustness of these estimates to specification and sample choices.  

The first robustness checks are designed to ensure that our findings are not sensitive to functional 

form assumptions.  In the second row we control for third order polynomials in prior 

achievement.  In the third row, we take advantage of data from pre-policy years to ensure that our 

findings are not driven by non-linearity in the relationship between initial performance and 

subsequent achievement.  Intuitively, we subtract the pre-policy third difference estimate of the 

effect of surpassing the cutoff from the corresponding post-policy estimate.  If the relationship 

between initial and subsequent performance is stable over time, this fourth difference will ensure 

that our findings are not driven by non-linearity.14  The fourth row shows estimates using pre-

policy data and controlling for polynomials of prior ability.  While these estimates differ slightly 

from the baseline findings, the differences are not significant.  Furthermore, the overall pattern of 

results stays the same. 

The final three rows of Table 3 show net effect estimates when we modify the sample 

under examination.  First, we include only those students with the same test forms to eliminate 

problems associated with initial performance measures that may not be comparable across 

students.15  Next, we examine only those students with consistent grade patterns.  This addresses 

problems of measurement error that may be attributable to the miscoding of grades.  Neither of 

                                                      

14 We implement this strategy by performing IV in which we control for the dummy variable that indicates a student 

surpassed the cutoff and the interaction of this term with reading performance.  Our instruments become the dummy 

variable and interaction term multiplied by another variable that indicates whether the cohort was exposed to the 

accountability policy. 
15 Different test forms are used for different years.  The inclusion of year fixed effects addresses this concern. 



 

these two sample restrictions has any substantive effects on the estimated net effect.  As a final 

robustness check, we examine those students who passed reading in June and were marginal in 

math.16  The effect size is slightly larger for third grade reading and somewhat smaller for third 

and sixth grade math.  Overall, these results are similar to our baseline estimates. 

Table 4 examines the heterogeneity of two-year net effects across years and student 

subgroups.  The first row shows the aggregate estimates taken from column 3 of Table 2.  

Examining the three cohorts of student to experience the policy, it appears that the 1997 cohort of 

third graders appears to have experienced somewhat larger positive effects than the later groups, 

although these differences are not statistically significant.  Top achieving students appear to have 

the experienced the largest gains, although these estimates also have large standard errors.  This 

may be due to the fact that these students attended summer school, but were not retained.  There 

are no significant and consistent differences across race, gender or SES.  Overall, the net 

treatment effect of summer school and grade retention appear fairly homogenous. 

 

7. The Effect of Grade Retention   

While the June discontinuity allows us to estimate the net treatment effect, the prior 

literature suggests that the effects of summer school and retention may be quite different.  

Fortunately, the structure of the accountability program in Chicago provides an opportunity to 

separately identify the causal effect of grade retention.  In order to advance to the next grade, the 

maximum of a student’s June and August scores must exceed a predetermined cutoff in both 

                                                      

16 We can do this because of the two-dimensional nature of the cutoff.  We do not emphasize these results because 

few students were treated on the basis of math—this reduces our sample size and the precision with which we can 

estimate the treatment effects. 



 

reading and math.  The discontinuity generated by the August cutoff allows us to estimate the 

impact of grade retention for the group of students who attended summer school.   

Just as we did in estimating the net effects, we can reduce the dimensionality of the 

problem by considering only students who passed one subject in June and thus only had to pass 

the other subject in August.  This is even more important in the case of the retention estimates 

because it allows us to focus on a student’s August score alone.  If we instead focus on the 

maximum of June and August test scores, it is likely that students who scored just above the 

cutoff will differ from students who scored just below the cutoff, thus violating the central 

assumption of a regression discontinuity design.  This is true because students whose June scores 

exceeded the cutoff never attended summer school, which means that summer school students 

whose maximum (June and August) score exceeded the cutoff must have improved over the 

summer.  It is likely that these students were more motivated than those students whose 

maximum score did not exceed the cutoff.  For this reason, the analysis below focuses on the 

subset of students who passed math and failed reading in June.17   

 Figures 6 and 7 show the probability of retention and future academic outcomes as a 

function of August reading scores.  While the probability of retention does not drop sharply at the 

exact point of the cutoff, we can see that it rapidly decreases over a narrow range of values just 

below the cutoff.  We will refer to this range as the marginal area.  Figure 6 shows that, for third 

grade students, future performance is flat or decreasing in the marginal area, consistent with a 

positive effect of grade retention.  In contrast, Figure 7 presents little evidence that retention has 

any benefit for sixth grade students. 

                                                      

17 We could also examine individuals who passed reading and failed math in June.  In practice, however, very few of 

these students end up near the cutoff in August. 



 

 Because of the fuzzy discontinuity, we cannot limit our analysis to students immediately 

above and below the cutoff.  However, if we use too broad a range of data, students at the 

extreme ends of the distribution are unlikely to be comparable, forcing us to rely heavily on our 

covariates to control for the differences between students.  As a compromise, we focus on a 

subset of children who scored relatively close to the cutoff on the August exam, including 

children who scored from 1 GE below the cutoff to 0.5 GE above the cutoff.18  To ascertain 

whether students are comparable (conditional on August reading performance), we first estimate 

the retention treatment effect without using additional covariates.  We then estimate the effect 

controlling for a rich set of prior achievement measures and demographic characteristics.  If the 

results are insensitive to the inclusion of these covariates, it is likely that the students to the left 

and right of the cutoff are comparable.  In addition, we test whether our estimates are robust to 

changes in the range of students in the sample. 

 Table 5 reports the coefficients from the first stage, which are as expected.  In particular, 

the coefficient of the marginal reading interaction term is strongly negative for both third and 

sixth grades.  This confirms that small changes in reading performance in the marginal area are 

associated with large reductions in the probability of being retained.  The instruments also have 

strong predictive power; the F-statistic of the instruments is 236 for the third grade cohorts and 

150 for the sixth grade cohorts. 

 Table 6 contains the estimated retention treatment effects for students in the third and 

sixth grades respectively.  We see many of the same patterns as we did for the net effects.  The 

IV point estimates (shown in column 2) are somewhat larger than the OLS estimates (shown in 

column 1), suggesting that waivers were given to students with positive unobservable 

                                                      

18 We include a broader range of data below the cutoff in order to effectively estimate the effect of reading 



 

characteristics (note that these differences are not statistically significant.)  The third column 

shows IV estimates that control for student characteristics.  These estimates are similar to those 

in column 2, suggesting that the students in our analysis are comparable once we control for 

August reading ability.    

 The point estimates in Table 6 suggest that retention may not have as powerful a negative 

effect on academic achievement as commonly cited in the literature.  The IV estimates indicate 

that being retained in the third grade actually increases performance the following year by 0.17 

logits in reading and 0.23 logits in math.  These treatment effects correspond to increases in 

achievement of 41 and 33 percent of the average annual gain.  By the second year following 

retention, the math effect has decreased substantially, but is still significant.  The two-year 

reading effect, however, is not statistically different than zero.          

 While it appears that the retention effects have become more negative by the second year, 

changes in the policy effect over time are confounded by the changes in student incentives from 

grade to grade.  One year after third grade, retained students (i.e., those who are repeating the 

third grade) face high stakes testing again while promoted students (now in the fourth grade) do 

not.  Two years later, the majority of retained students as well as promoted students face little 

incentive to perform well on the ITBS exams.  For this reason, the two-year estimates provide the 

most accurate view of the retention effects for third graders. 

When we compare sixth grade students one year later, we find no statistically significant 

differences between the performance of retained and promoted students, despite the fact retained 

students faced high-stakes testing and the promoted students did not.  It may be the case that 

negative retention effects were offset by the positive incentive effects.  When we compare these 

                                                                                                                                                                           

performance on the probability of retention at and below the marginal area.  



 

students after two years, the incentives are reversed.  Students who had been promoted in sixth 

grade are most likely in eighth grade, facing a high-stakes exam once again, whereas retained 

students are most likely in seventh grade, facing a low-stakes exam.  For this reason, the two-year 

effects probably reflect an upper bound on any negative retention effects.  And, in fact, we do 

find that retained students score roughly 0.15 logits (27 percent of an annual learning gain) lower 

than promoted students.  However, there is no significant difference between the math 

achievement of retained and promoted students. 

Table 7 shows the sensitivity of our results to functional form assumptions and choice of 

samples.  Rows 2 and 3 show how our estimates vary as we control for second and third order 

polynomials of initial performance.  Our estimates appear robust to these changes.19  Rows 4, 5, 

and 6 show how our estimates change as we use data from broader and narrower ranges around 

the cutoff.  The results do vary somewhat depending on our sample but the differences are not 

significant and do not change the pattern of results.  The final row shows estimates of the 

retention treatment effect when we examine students who passed reading and failed math in 

June.  Our findings in some cases are quite different when we examine this sample.  The 

difference is significant only for third grade math, however.  In all cases, the standard errors of 

these estimates are quite large making it difficult to draw strong conclusions. 

  Table 8 reports the two-year retention effects for various cohorts and sub-samples.  

Several interesting patterns are evident.  First, it appears that the effect of grade retention has 

improved for later cohorts, although relatively large standard errors make it impossible to state 

this with a high level of confidence.  This pattern, however, is consistent with the introduction of 

an after-school tutoring program for retained students starting in 1998.  There are no consistent 



 

or statistically significant differences in the magnitude of the treatment effects by race, gender, 

SES, or prior achievement.   

 

8.  The Effect of Summer School  

 In Section 6 we estimated the net effect (
N

β ) of summer school and grade retention.  

Using information on the magnitude of the retention treatment effects, we can now back out an 

estimate of the summer school treatment effect.  Assuming homogeneous treatment, the net 

effect can be represented in the following way: 

(7) 
RRSN

Pβββ += , 

where 
S

β  and 
R

β  are the summer school and retention treatment effects respectively and 
R

P  is 

the probability of being retained conditional on attending summer school.  Hence, to determine 

the separate effect of summer school, we must obtain estimates of the net effect of summer 

school and grade retention (
S

β ), the probability of retention conditional on attending summer 

school (
R

P ), and the separate effect of grade retention (
R

β ).  

 For the net effects, we will use the third difference estimates presented in Table 2.  While 

the probability of retention is simple to calculate empirically, it is important to use the same 

population that was used to estimate the net effect.  Recall that this group consisted of students 

who in June passed the promotional cutoff in math and scored just below or just above the 

promotional cutoff in reading (which we therefore refer to as the June sample).  It can be shown 

that the conditional probability of retention consistent with our third difference estimate of the 

net effect is the following: 

                                                                                                                                                                           

19 Because the ITBS exam was not given in August prior to 1997, there it is not possible to observe the 
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where R  is the fraction retained and the other variables are as previously described.  This 

estimate is the probability of being retained for those students who went to summer school 

because they missed the cutoff. 

 Finally, we must obtain an estimate of the retention effect, once again taking care to use 

the same population that was used to determine the net effect.  Unfortunately, the sample used to 

estimate the retention effects in Section 7 is somewhat different than the June sample.  The 

retention effects were estimated using the sample of students who passed the math, but not the 

reading, cutoff in June, and then scored within a limited range around the reading cutoff (both 

above and below) in August (which we refer to as the August sample).  In general, this is a lower 

ability group than the population used to estimate the net effects.  To the extent that the effect of 

retention is different across the two groups, our estimates of the summer school effect will be 

biased.  While the nature of our identification strategy prevents us from using the same sample to 

estimate the net and retention effects, we can attempt to place reasonable bounds on the summer 

school effect.   

 The middle column in Table 9 presents the summer school effect under the assumption 

that the retention effect is identical for the June and August samples.  Using the retention effects 

presented in Table 6, the implied two-year summer school treatment effects range from 0.03 to 

0.07 logits.  For third grade students, summer school increases reading and math achievement 

two year later by roughly 12 percent of the average annual learning gain.  For sixth graders, the 

effects are roughly half as large. 

                                                                                                                                                                           

counterfactual relationship between August scores and subsequent performance. 



 

 As we mentioned previously, it may be that the retention treatment effects are different 

for students near the cutoff in August than for students near the cutoff in June.  To place 

reasonable bounds on the potential summer school effects, we subtract 0.25 logits from the 

retention treatment effect for the upper estimates and add 0.25 logits for the lower estimates.  

Depending on our assumption regarding the magnitude of the retention treatment effect, the 

implied summer school effects can vary substantially.  Despite this, it appears that even under 

very pessimistic assumptions, summer school improves performance in mathematics.  In reading, 

the lower bound estimates are close to zero.  Conversely, the upper bound estimates are 

substantial for reading and for mathematics. 

 

9. Conclusions   

 As school districts impose tougher standards on students and increasingly hold schools 

accountable for their performance, there will be a growing need to find effective remedial 

education programs to help low-achieving students.  The evidence presented in this paper 

suggests that summer school and grade retention have a modest but positive net impact on 

achievement scores for third grade students, but little if any effect on academic achievement for 

sixth grade students.  These findings are robust to various specifications, and do not appear to 

vary substantially across different groups.   However, these programs do appear to have a larger 

effect on math than reading achievement.   

 For third grade students, the net effect is a combination of benefits from both summer 

school and grade retention.  Contrary to conventional wisdom and prior research, we find that 

retention may actually increase academic achievement for low-achieving third graders.  For sixth 

grade students, the zero net effects appear to mask a small positive summer school effect and a 



 

negative retention effect.  However, it is also possible that the negative effects for sixth graders 

are driven by the higher incentives that promoted students face two years later.   

 These finding suggest that school districts that implement policies aimed at increasing 

standards and accountability can utilize summer school and (to a lesser extent) grade retention to 

support students who cannot initially meet the new standards.  One limitation of this analysis is 

that we were only able to follow students for several years following summer school and/or 

retention.  It is possible that the summer school benefits will fade and that the long term effects 

of retention will be worse than the short term effects.  As more time passes from the 

implementation of the program, it will be possible to examine these possibilities in greater detail. 

  

  



 

 

References 

 

Alexander, K. L., D. R. Entwisle, et al. (1994). On the Success of Failure: A Reassessment of the 

Effects of Retetenion in the Primary Grades. New York, University of Cambridge Press. 

Angrist, J. D. and V. Lavy (1999). “Using Maimonides Rule to Estimate the Effect of Class Size 

on Scholastic Achievement.” Quarterly Journal of Economics 114(2): 535-75. 

Barnett, W. S. (1995).  "Long-Term Effects of Early Childhood Programs on Cognitive and 

School Outcomes."  The Future of Children 5(3): 25-51. 

Berk, R. A. and D. Rauma (1983). “Capitalizing on Nonrandom Assignment to Treatments: A 

Regression-Discontinuity Evaluation of a Crime-Control Program.” Journal of the 

American Statistical Association 78(381): 21-28. 

Black, S. (1999) “Do Better Schools Matter?  Parental Valuation of Elementary Education.”  

Quarterly Journal of Economics 114: 577-599. 

Cooper, H., K. Charlton, et al. (2000). Making the Most of Summer School: A Meta-Analysis 

and Narrative Review. Monograph series of the Society for Research in Child 

Development. Malden, MA. 

Dworkin, A. G., J. Lorence, et al. (1999). Elementary School Retention and Social Promotion in 

Texas: An Assessment of Students who Failed the Reading Section of the TAAS. 

Houston, University of Houston. 

ECS (2000). ECS State Notes, Education Commission of the States (www.ecs.org). 

Eide, E. R. and M. H. Showalter (forthcoming). "The Effect of Grade Retention on Educational 

and Labor Market Outcomes."  Economics of Education Review. 



 

Fine, M. (1991). Framing Dropouts: Notes on the Politics of an Urban Public High School. 

Albany, N.Y., SUNY Press. 

Grissom, J. B. and L. A. Shepard (1989). Repeating and Dropping Out of School. Flunking 

Grades: Research and Policies on Retention. L. A. Shepard and M. L. Smith. New York, 

The Falmer Press: 34-63. 

Guryan, J. (2000) "Does Money Matter?  Regression Discontinuity Estimates from Education 

Finance Reform in Massachusetts.” University of Chicago Working Paper. 

Hahn, J., P. Todd, et al. (1999). Evaluating the Effect of an Anti-Discrimination Law Using a 

Regression-Discontinuity Design. NBER Working Paper #7131. Cambridge, MA. 

Hanushek, E. A. (1996).  “School Resources and Student Performance.” In Does Money Matter? 

The Effect of School Resources on Student Achievement and Adult Success, ed. Burtless, 

G. Washington D.C.: Brookings Institution Press.  

Hedges, L. V. and R. Greenwald (1996).  “Have Times Changed? The Relation between School 

Resources and Student Performance.” In Does Money Matter? The Effect of School 

Resources on Student Achievement and Adult Success, ed. Burtless, G. Washington 

D.C.: Brookings Institution Press. 

Holmes, C. T. (1989). Grade Level Retention Effects: A Meta-Analysis of Research Studies. 

Flunking Grades:  Research and Policies on Retention. L. A. Shepard and M. L. Smith. 

New York, The Falmer Press: 16-33. 

Hoxby, C. M. (2000). "The Effects of Class Size on Student Achievement: New Evidence from 

Population Variation."  Quarterly Journal of Economics 115 (4): 1239-1285. 

Jacob, B. A. and S. D. Levitt (2001). High-Stakes Testing and Teacher Cheating in the Chicago 

Public Schools. University of Chicago, Working Paper. 



 

Jacob, B.A. (2001).  The Impact of High-Stakes Testing on Student Achievement: Evidence from 

Chicago.  Working paper, John F. Kennedy School of Government, Harvard University. 

Karweit, N. L. (1991). Repeating a Grade: Time to Grow or Denial of Opportunity. Baltimore, 

Maryland, Center for Research on Effective Schooling for Disadvantaged Students. 

Katz, L. F. and K. M. Murphy (1992).  "Changes in Relative Wages 1963-1987: Supply and 

Demand Factors."  Quarterly Journal of Economics 107 (1): 35-78.  

Krueger, A. B. (1999). "Experimental Estimates of Education Production Functions."  Quarterly 

Journal of Economics 114:497-532. 

Murnane, R. J., J. B. Willet, and F. Levy (1995). "The Growing Importance of Cognitive Skills in 

Wage Determination."  The Review of Economics and Statistics 77 (2):251-266. 

Pierson, L. H. and J. P. Connell (1992). “Effect of Grade Retention on Self-System Processes, 

School Engagement and Academic Performance.” Journal of Educational Psychology 84: 

300-307. 

Pipho, C. (1999). “Summer School: Rx for Low Performance.” Phi Delta Kappan 

81(September): 7. 

Roderick, M. (1994). “Grade Retention and School Dropout:  Investigating the Association.” 

American Educational Research Journal 31(4): 729-759. 

Roderick, M., J. Nagaoka, et al. (2000). Update: Ending Social Promotion. Chicago, IL, 

Consortium on Chicago School Research. 

Rumberger, R. W. (1987). “High School Dropouts: A Review of Issues and Evidence.” Review 

of Educational Research 57: 101-121. 

Schulz, E. M., R. Toles, et al. (1986). Association of Dropout Rates with Student Attributes. 

American Educational Research Association, San Francisco, CA. 



 

Shepard, L. A. and M. L. Smith (1989). Flunking Grades: Research and Policies on Retention. 

New York, N.Y., The Falmer Press. 

Thistlewaite, D. and D. Campbell (1960). “Regression-Discontinuity Analysis: An Alternative to 

the Ex-Post Facto Experiment.” Journal of Educational Psychology 51: 309-317. 

Topel, R. (1999). "Labor Markets and Economic Growth." in Handbook of Labor Economics, ed. 

Ashenfelter, O. and Card, D. Amsterdam: Elsevier Science B.V. pp. 2943-2984. 

Trochim, W. (1984). Research Design for Program Evaluation: The Regression-Discontinuity 

Approach. Beverley Hills, CA, Sage Publications. 

Wright, B. and M. H. Stone (1979). Best Test Design. Chicago, IL, MESA Press. 



 

F
ig

u
re

 1
: 

 S
tu

d
en

t 
P

ro
g
re

ss
 U

n
d

er
 t

h
e 

C
h

ic
a
g
o
 A

cc
o
u

n
ta

b
il

it
y
 P

o
li

cy
 

      

A
u

g
u

st
 

T
e
st

in
g

  

A
d

v
a
n

ce
 

A
d

v
a
n

ce
 

Ju
n

e
 

T
e
st

in
g

 

R
e
p

e
a
t

G
ra

d
e
 

Ju
n

e 
M

a
th

 T
es

t 
<

 C
u

to
ff

  
o

r 
 

Ju
n

e 
R

ea
d

in
g

 T
es

t 
<

 C
u

to
ff

 

Ju
n

e 
M

a
th

 T
es

t 
>

 C
u

to
ff

  
a

n
d

  
Ju

n
e 

R
ea

d
in

g
 T

es
t 

>
 C

u
to

ff
 

A
tt

e
n

d
 S

u
m

m
e

r
 

S
c
h

o
o

l

M
a

x
 (

Ju
n

e,
A

u
g

u
st

) 
M

a
th

 T
es

t 
>

 C
u

to
ff

 
a

n
d

  
M

a
x

 (
Ju

n
e,

A
u

g
u

st
) 

R
ea

d
in

g
 T

es
t 

>
 

C
u

to
f f

M
a

x
 (

Ju
n

e,
A

u
g

u
st

) 
M

a
th

 T
es

t 
<

 C
u

to
ff

 
o

r 
M

a
x

 (
Ju

n
e,

A
u

g
u

st
) 

R
ea

d
in

g
 T

es
t 

<
 

C
u

to
f f

 



 

F
ig

u
re

 2
: 

T
h

e 
R

el
a
ti

o
n

sh
ip

 B
et

w
ee

n
 J

u
n

e 
R

ea
d

in
g
 S

co
re

s 
a
n

d
 t

h
e 

P
ro

b
a
b

il
it

y
 o

f 
A

tt
en

d
in

g
 S

u
m

m
er

 S
ch

o
o
l 

o
r 

B
ei

n
g
 R

et
a
in

ed
 

  N
o

te
s:

 S
am

p
le

 o
f 

th
ir

d
 a

n
d

 s
ix

th
 g

ra
d

e 
st

u
d

en
ts

 f
ro

m
 1

9
9

7
 t

o
 1

9
9

9
 w

h
o

se
 J

u
n
e 

m
at

h
 s

co
re

 e
x
ce

ed
ed

 t
h
e 

p
ro

m
o

ti
o

n
al

 c
u
to

ff
 b

u
t 

w
h
o

se
 J

u
n
e 

re
ad

in
g
 s

co
re

 d
id

 n
o

t.
  

0

0
.2

0
.4

0
.6

0
.81 -1

.5
-1

-0
.5

0
0

.5
1

1
.5

R
e

a
d

in
g

 G
E

 R
e

la
ti

v
e

 t
o

 C
u

to
ff

Fraction Treated



 

F
ig

u
re

 3
: 

T
h

e 
R

el
a
ti

o
n

sh
ip

 B
et

w
ee

n
 C

u
rr

en
t 

a
n

d
 F

u
tu

re
 R

ea
d

in
g
 P

er
fo

rm
a
n

ce
 o

f 
T

h
ir

d
 G

ra
d

e 
S

tu
d

en
t 

P
ri

o
r 

to
 t

h
e 

 

A
cc

o
u

n
ta

b
il

it
y
 P

o
li

cy
 

    N
o

te
s:

  
S

am
p

le
 i

n
cl

u
d

es
 t

h
ir

d
 g

ra
d

e 
st

u
d

en
ts

 i
n
 1

9
9

4
 w

h
o

se
 J

u
n
e 

m
at

h
 s

co
re

 e
x
ce

ed
ed

 w
h
at

 w
as

 t
h
e 

p
ro

m
o

ti
o

n
al

 c
u
to

ff
 i

n
 1

9
9

7
.

-2
.0

-1
.6

-1
.2

-0
.8

-0
.4

0
.0

-1
.2

-0
.7

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
9

9
4

 R
e

a
d

in
g

 G
E

 R
e

la
ti

v
e

 t
o

 1
9

9
7

 C
u

to
ff

Future Performance

R
e

a
d

in
g

 S
c
o

re
 '9

5
R

e
a

d
in

g
 S

c
o

re
 '9

6



 

F
ig

u
re

 4
: 

T
h

e 
R

el
a
ti

o
n

sh
ip

 b
et

w
ee

n
 R

ea
d

in
g
 a

n
d

 M
a
th

 P
er

fo
rm

a
n

ce
 a

n
d

 J
u

n
e 

R
ea

d
in

g
 P

er
fo

rm
a
n

ce
 f

o
r 

T
h

ir
d

 G
ra

d
e 

S
tu

d
en

ts
. 

 N
o

te
s:

 S
am

p
le

 o
f 

th
ir

d
 g

ra
d

e 
st

u
d

en
ts

 f
ro

m
 1

9
9

7
 t

o
 1

9
9

9
 w

h
o

se
 J

u
n
e 

m
at

h
 s

co
re

 e
x
ce

ed
ed

 t
h
e 

p
ro

m
o

ti
o

n
al

 c
u
to

ff
 b

u
t 

w
h
o

se
 J

u
n
e 

re
ad

in
g
 s

co
re

 d
id

 n
o

t.
 

0

0
.2

0
.4

0
.6

0
.81 -1

.5
-1

-0
.5

0
0
.5

1
1

.5

R
e
a
d

in
g

 G
E

 R
e
la

ti
v

e
 t

o
 C

u
to

ff

Fraction Treated

-1
.8

-1
.4

-1-0
.6

-0
.2

0
.2

0
.6

Achievement One Year Later

F
ra

c
ti
o
n
 T

re
a
te

d
R

e
a
d
in

g
M

a
th



 

F
ig

u
re

 4
: 

T
h

e 
R

el
a
ti

o
n

sh
ip

 b
et

w
ee

n
 R

ea
d

in
g
 a

n
d

 M
a
th

 P
er

fo
rm

a
n

ce
 a

n
d

 J
u

n
e 

R
ea

d
in

g
 P

er
fo

rm
a
n

ce
 f

o
r 

S
ix

th
 G

ra
d

e 

S
tu

d
en

ts
. 

 N
o

te
s:

 S
am

p
le

 o
f 

th
ir

d
 g

ra
d

e 
st

u
d

en
ts

 f
ro

m
 1

9
9

7
 t

o
 1

9
9

9
 w

h
o

se
 J

u
n
e 

re
ad

in
g
 s

co
re

 e
x
ce

ed
ed

 t
h
e 

p
ro

m
o

ti
o

n
al

 c
u
to

ff
 b

u
t 

w
h
o

se
 J

u
n
e 

m
at

h
 s

co
re

 d
id

 n
o

t.
  

0

0
.2

0
.4

0
.6

0
.81 -1

.5
-1

-0
.5

0
0

.5
1

1
.5

R
e

a
d

in
g

 G
E

 R
e

la
ti

v
e

 t
o

 C
u

to
ff

Fraction Treated

-0
.4

00
.4

0
.8

1
.2

1
.6

Achievement One Year Later

F
ra

c
ti
o

n
 T

re
a

te
d

R
e

a
d

in
g

M
a

th



 

F
ig

u
re

 6
: 

R
el

a
ti

o
n

sh
ip

 B
et

w
ee

n
 A

u
g
u

st
 R

ea
d

in
g
 a

n
d

 N
ex

t 
Y

ea
r 

R
ea

d
in

g
 a

n
d

 M
a
th

 P
er

fo
rm

a
n

ce
 f

o
r 

T
h

ir
d

 G
ra

d
e 

S
tu

d
en

ts
 

 N
o

te
s:

 S
am

p
le

 o
f 

th
ir

d
 g

ra
d

e 
st

u
d

en
ts

 f
ro

m
 1

9
9

7
 t

o
 1

9
9

9
 w

h
o

se
 J

u
n
e 

re
ad

in
g
 s

co
re

 e
x
ce

ed
ed

 t
h
e 

p
ro

m
o

ti
o

n
al

 c
u
to

ff
 b

u
t 

w
h
o

se
 J

u
n
e 

re
ad

in
g
 s

co
re

 d
id

 n
o

t.
 

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

-1
.4

-1
-0
.6

-0
.2

0
.2

0
.6

1
1
.4

A
u

g
u

s
t 

R
e

a
d

in
g

 G
E

 R
e

la
ti

v
e
 t

o
 C

u
to

ff

Fraction Retained

-1
.6

-1
.4

-1
.2

-1-0
.8

-0
.6

-0
.4

-0
.2

0

Achievement One Year Later

F
ra

c
ti
o
n

 R
e

ta
in

e
d

R
e
a

d
in

g
M

a
th



 

F
ig

u
re

 7
: 

R
el

a
ti

o
n

sh
ip

 B
et

w
ee

n
 A

u
g
u

st
 R

ea
d

in
g
 a

n
d

 N
ex

t 
Y

ea
r 

R
ea

d
in

g
 a

n
d

 M
a
th

 P
er

fo
rm

a
n

ce
 f

o
r 

S
ix

th
 G

ra
d

e 
S

tu
d

en
ts

 

  N
o

te
s:

 S
a

m
p

le
 o

f 
si

x
th

 g
ra

d
e 

st
u

d
en

ts
 f

ro
m

 1
9

9
7

 t
o

 1
9

9
9

 w
h

o
se

 J
u

n
e 

m
a

th
 s

co
re

 e
x

ce
ed

ed
 t

h
e 

p
ro

m
o

ti
o

n
a

l 
cu

to
ff

 b
u

t 
w

h
o

se
 J

u
n

e 
re

a
d

in
g

 s
co

re
 d

id
 

n
o

t.
  

 

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

-1
.4

-1
-0
.6

-0
.2

0
.2

0
.6

1
1
.4

A
u

g
u

s
t 

R
e
a

d
in

g
 G

E
 R

e
la

ti
v

e
 t

o
 C

u
to

ff

Fraction Retained

-0
.8

-0
.4

00
.4

0
.8

1
.2

1
.6

Achievement One Year Later

F
ra

c
ti
o

n
 R

e
ta

in
e

d
R

e
a

d
in

g
M

a
th



 

Table 1 

Summary Statistics 

 Third Grade Sixth Grade 

 
Total 

Failed 
Promotion 

Cutoff 
Retained Total 

Failed 
Promotion 

Cutoff 
Retained 

Student Characteristics       

Black   0.713 0.822 0.844 0.553 0.645 0.678 

Hispanic 0.174 0.136 0.123 0.318 0.314 0.288 

Male  0.489 0.528 0.551 0.480 0.518 0.535 

Black Male  0.347 0.435 0.467 0.261 0.334 0.364 

Hispanic Male 0.087 0.070 0.066 0.156 0.162 0.152 

Age 9.379 9.438 9.406 12.353 12.471 12.448 

Free Lunch 0.805 0.904 0.927 0.774 0.890 0.905 

Reduced Price Lunch 0.075 0.043 0.031 0.088 0.052 0.041 

Currently in Bilingual 
Program 0.023 0.021 0.020 0.112 0.206 0.197 

Formerly in Bilingual 
Program 0.135 0.087 0.076 0.228 0.111 0.090 

Special Education 0.033 0.038 0.039 0.019 0.023 0.025 

Living with Relatives 0.113 0.084 0.076 0.121 0.105 0.100 

Living in Foster Care 0.067 0.086 0.088 0.045 0.062 0.067 

Experience Under the 
Accountability Policy       

Passed in June 0.573 0.000 0.012 0.690 0.000 0.035 

Failed Math Only 0.044 0.102 0.041 0.060 0.193 0.135 

Fail Reading Only 0.199 0.465 0.366 0.147 0.473 0.352 

Failed Math and Reading 0.185 0.432 0.581 0.104 0.334 0.478 

June Waiver 0.028 0.065 0.000 0.028 0.089 0.000 

Assigned to Summer School 0.401 0.933 1.000 0.286 0.908 1.000 

August Waiver 0.058 0.135 0.000 0.038 0.121 0.000 

Promoted 0.791 0.517 0.000 0.873 0.606 0.000 

Retained 0.209 0.483 1.000 0.127 0.394 1.000 

School Performance        

Base year math score  
-1.121 
(1.066) 

-1.916 
(0.726) 

-2.114 
(0.695) 

0.772 
(0.917) 

-0.045 
(0.589) 

-0.210 
(0.563) 

Year one math score 
-0.440 
(0.984) 

-1.039 
(0.804) 

-1.210 
(0.843) 

1.264 
(0.899) 

0.566 
(0.641) 

0.348 
(0.665) 

Year two math score  
0.118 

(0.982) 
-0.491 
(0.760) 

-0.668 
(0.761) 

1.739 
(0.856) 

1.074 
(0.661) 

0.785 
(0.676) 

Base year reading score 
-1.205 
(1.060) 

-2.111 
(0.560) 

-2.280 
(0.540) 

0.162 
(0.951) 

-0.755 
(0.466) 

-0.836 
(0.479) 

Year one reading score  
-0.796 
(1.010) 

-1.440 
(0.721) 

-1.610 
(0.752) 

0.727 
(0.970) 

-0.059 
(0.638) 

-0.334 
(0.640) 

Year two reading score  
-0.350 
(1.011) 

-0.997 
(0.704) 

-1.212 
(0.688) 

1.291 
(0.962) 

0.540 
(0.695) 

0.213 
(0.700) 

Number of Observations 74,260 31,738 15,514 73,634 22,861 9,332 

Notes to Table 1: The sample contains all students who were enrolled in the appropriate grades between 
the Spring of 1997 and the Spring of 1999.



 

Table 2   
The Net Effect of Summer School and Grade Retention on Student Achievement  

 Specification 

Dependent Variables OLS IV IV 

 (1) (2) (3) 
    

Third Grade    
     Reading     

         One year (n=13,687) 
0.082 

(0.019) 
0.112 

(0.026) 
0.104 

(0.025) 

         Two years (n=12,806) 
0.032 

(0.020) 
0.064 

(0.027) 
0.062 

(0.026) 
     Math     

         One year (n=13,664) 
0.155 

(0.019) 
0.132 

(0.026) 
0.136 

(0.024) 

          Two years (n=12,802) 
0.066 

(0.021) 
0.087 

(0.027) 
0.095 

(0.026) 
    
Sixth Grade    
     Reading     

         One year (n=7,920) 
-0.013 
(0.022) 

0.012 
(0.029) 

0.024 
(0.027) 

          Two years (n=7,262) 
-0.027 
(0.024) 

-0.015 
(0.032) 

0.000 
(0.030) 

     Math     

         One year (n=7,904) 
0.056 

(0.016) 
0.077 

(0.021) 
0.077 

(0.021) 

         Two years (n=7,249) 
0.007 

(0.019) 
0.018 

(0.025) 
0.019 

(0.023) 
    
Additional Performance 
and Demographic 
Covariates 

No No Yes 

Notes for Table 2: The sample third and sixth grade students from 1997 to 1999 whose June math score 
was above the cutoff and whose June reading score was within + or – 0.2 grade equivalents of the cutoff.  
Year fixed effects are included in each model.  The additional performance and demographic covariates 
include:  one and two year prior achievement scores in math and reading (with missing values set to 
zero), along with variables that indicate whether these scores were missing, age, male, black, Hispanic, 
black*male, Hispanic*male, free lunch, reduced price lunch, special education participation, current 
bilingual participation, past bilingual participation, lives in foster care, lives with a non-parent relative, 
census block level social status and census block level poverty.     
 
 



 

Table 3 

The Robustness of Two-Year Net Summer School and Retention Estimates to Sample and 

Specification Choice 

 Third Grade Sixth Grade 

Specification Reading Math Reading Math 

Baseline 
0.062 

(0.026) 

0.095 

(0.026) 

0.000 

(0.030) 

0.019 

(0.023) 

Including polynomials in 

prior achievement 

0.120 

(0.038) 

0.089 

(0.037) 

-0.021 

(0.035) 

-0.007 

(0.028) 

Including pre-policy 

cohorts (fourth difference 

estimates) 

0.029 

(0.018) 

0.060 

(0.017) 

0.003 

(0.021) 

0.042 

(0.017) 

Including pre-policy 

cohorts and polynomials 

in prior achievement 

0.018 

(0.018) 

0.062 

(0.017) 

-0.006 

(0.024) 

0.025 

(0.019) 

Including Only Students 
with Common Test Form 
and Level 

0.060 

(0.026) 

0.091 

(0.025) 

0.003 

(0.030) 

0.021 

(0.023) 

Including Only Students 
with Consistent Grade 
Patterns 

0.064 

(0.026) 

0.094 

(0.026) 

-0.004 

(0.030) 

0.018 

(0.023) 

Passed Reading and 

Marginal in Math 

-0.007 

(0.041) 

0.062 

(0.038) 

0.058 

(0.043) 

0.007 

(0.033) 
 Notes for Table 3: Each cell contains an estimate from a separate 2SLS regression that controls for all of the past 

performance and demographic characteristics listed in the notes to Table 2.  For estimates in the last row, we use 
children who passed reading and were near the cutoff in math.  For the other specifications we use 
children who passed math and were near the cutoff in reading.  



 

Table 4 

The Heterogeneity of Two-Year Net Summer School and Probation Effects  

 Third Grade Sixth Grade 

 Reading Math Reading Math 

Baseline estimates  
0.062 

(0.026) 

0.095 

(0.026) 

0.000 

(0.030) 

0.019 

(0.023) 

Year     

1997 Cohort 
0.093 

(0.052) 

0.154 

(0.050) 

-0.001 

(0.047) 

0.022 

(0.039) 

1998 Cohort 
0.032 

(0.039) 

0.065 

(0.038) 

0.007 

(0.054) 

0.025 

(0.042) 

1999 Cohort 
0.058 

(0.047) 

0.085 

(0.047) 

-0.006 

(0.054) 

0.020 

(0.041) 

Prior Achievementa     

Bottom Quartile  
0.074 

(0.056) 

0.058 

(0.055) 

-0.003 

(0.057) 

-0.003 

(0.045) 

2nd Quartile  
0.073 

(0.045) 

0.128 

(0.043) 

-0.024 

(0.044) 

0.011 

(0.034) 

3rd Quartile  
0.011 

(0.048) 

0.040 

(0.048) 

0.031 

(0.060) 

0.031 

(0.048) 

Top Quartile  
0.202 

(0.095) 

0.189 

(0.090) 

-0.006 

(0.216) 

0.127 

(0.175) 

Race, Gender & SES     

Black 
0.071 

(0.030) 
0.090 

(0.025) 
-0.047 
(0.040) 

-0.015 
(0.031) 

Hispanic 
0.053 

(0.062) 
0.117 

(0.062) 
0.049 

(0.048) 
0.061 

(0.039) 

White/Other 
-0.018 
(0.109) 

0.082 
(0.104) 

0.175 
(0.124) 

0.092 
(0.092) 

Male 
0.034 

(0.037) 
0.077 

(0.037) 
0.002 

(0.043) 
-0.011 
(0.034) 

Female 
0.086 

(0.036) 
0.112 

(0.035) 
-0.008 
(0.041) 

0.047 
(0.032) 

Free Lunch 
0.061 

(0.027) 
0.094 

(0.026) 
-0.005 
(0.031) 

0.018 
(0.024) 

No Free Lunch 
0.070 

(0.094) 
0.126 

(0.095) 
0.089 

(0.119) 
0.051 

(0.091) 
Notes for Table 4: Each cell includes an estimate from a separate 2SLS regression (equivalent to the third 
difference estimates shown in Table 2 and described in the text) that controls for year fixed effects and all 
of the additional performance and demographic variables listed in the notes to Table 2.  a Prior 
achievement is measured as the average math and reading score in second or fifth grade.  Quartiles are 
determined on the basis of students in this sample.  A small number of students who were missing second 
or fifth grade test scores are excluded from this categorization. 

 



 

Table 5 

The Effect of August Test Performance on the Probability of Grade Retention  

Independent variables  Third Grade Sixth Grade 

Math GE 
-0.027** 

(.008) 

-0.013* 

(0.009) 

Reading GE 
-0.024 

(0.047) 

0.047 

(0.077) 

Marginal Reading 
2.451** 

(0.178) 

3.387** 

(0.472) 

Marginal Reading*Reading GE 
-1.031** 

(0.074) 

-0.733** 

(0.102) 

Passed Reading  
-0.862** 

(0.162) 

-0.250 

(0.410) 

Passed Reading*Reading GE 
0.058 

(0.063) 

-0.098 

(0.088) 

   

Number of Observations 7,623 4,552 

R-Squared 0.477 0.504 

F-Statistic of Instruments 
236.0 

(Pr>F=0) 

149.7 

(Pr>F=0) 

Notes to Table 5: Sample includes students assigned to summer school who passed math but failed reading in June 

and who scored between 1 GEs below and 0.5 GEs above the reading cutoff in August.  These results correspond to 

the first-stage estimates when reading scores two years later is the variable of interest.  The exact results vary 

depending on subject and timing.  August reading and math measures along with additional ability and demographic 

controls are included in both the first and second-stages. 



 

Table 6   

The Effect of Grade Retention on Student Achievement  

 Specification 

Dependent Variables OLS IV IV 

 (1) (2) (3) 

    

Third Grade    

     Reading     

         One year (n=8,120) 
0.085 

(0.017) 

0.162 

(0.052) 

0.174 

(0.050) 

         Two years (n=7,623) 
0.012 

(0.017) 

0.026 

(0.053) 

0.035 

(0.051) 

     Math     

         One year (n=8,111) 
0.096 

(0.019) 

0.199 

(0.058) 

0.227 

(0.044) 

          Two years (n=7,629) 
0.022 

(0.019) 

0.081 

(0.059) 

0.091 

(0.045) 

    

Sixth Grade    

     Reading     

         One year (n=5,018) 
-0.137 

(0.019) 

-0.077 

(0.058) 

-0.064 

(0.056) 

          Two years (n=4,552) 
-0.176 

(0.023) 

-0.160 

(0.067) 

-0.154 

(0.065) 

     Math     

         One year (n=5,005) 
-0.018 

(0.020) 

-0.019 

(0.060) 

0.057 

(0.040) 

         Two years (n=4,557) 
-0.105 

(0.021) 

-0.097 

(0.063) 

-0.046 

(0.047) 

    

Additional Performance and 

Demographic Covariates 
No No Yes 

Notes for Table 6: The sample includes third and sixth grade students from 1997 to 1999 whose June math score was 

above the cutoff, whose June reading score was below the cutoff and whose August reading score was between one 

grade equivalent below and 0.5 grade equivalents above the cutoff.  Year fixed effects are included in each model.  

The additional performance and demographic covariates are the same as those listed in the notes to Table 2. 



 

Table 7 

The Sensitivity of the Two-Year Grade Retention Estimates to Sample and Specification 

Choices 

 Third Grade Sixth Grade 

Specification Reading Math Reading Math 

Baseline estimates 
0.035 

(0.051) 

0.091 

(0.045) 

-0.154 

(0.065) 

-0.046 

(0.047) 

Including second order 

polynomials in prior 

achievement 

0.048 

(0.053) 

0.109 

(0.047) 

-0.162 

(0.065) 

-0.055 

(0.048) 

Including third order 

polynomials in prior 

achievement 

0.025 

(0.079) 

0.108 

(0.070) 

-0.134 

(0.123) 

-0.059 

(0.089) 

Broader range of students 
0.001 

(0.035) 

0.099 

(0.032) 

-0.139 

(0.043) 

-0.056 

(0.032) 

Broader range of students 

with second and third 

order polynomials in prior 

achievement 

0.073 

(0.054) 

0.121 

(0.049) 

-0.188 

(0.072) 

-0.050 

(0.053) 

Narrower range of 

students 

0.015 

(0.071) 

0.150 

(0.063) 

-0.183 

(0.100) 

-0.059 

(0.073) 

Alternative sample 

(students who passed the 

promotional cutoff in 

reading but not math in 

June) 

-0.072 

(0.105) 

-0.145 

(0.087) 

-0.228 

(0.090) 

-0.147 

(0.068) 

Notes to Table 7: Each cell contains an estimate from a separate 2SLS regression that controls for all of the past 

performance and demographic characteristics listed in the notes to Table 2.  The baseline sample includes children 

who passed the promotional cutoff in reading but not math in June.  The baseline range of data includes students who 

scored between 1.0 GEs below and 0.5 GEs above the reading cutoff in August.  The broader range of data used in 

rows four and five includes students who scored between 1.5 GEs below and 1.0 GEs above the reading cutoff in 

August.  The narrower range of data used in row six includes students who scored between 0.5 GEs below and 0.3 

GEs above the reading cutoff in August. 



 

Table 8 

The Heterogeneity of Two-Year Grade Retention Effects   

 Third Grade Sixth Grade 

Subgroup Reading Math Reading Math 

Year     

1997 Cohort 
-0.134 

(0.126) 

0.053 

(.109) 

-0.388 

(0.140) 

-0.234 

(0.112) 

1998 Cohort 
0.085 

(0.065) 

0.052 

(.059) 

-0.135 

(0.103) 

-0.036 

(0.075) 

1999 Cohort 
0.060 

(0.081) 

0.184 

(0.072) 

0.001 

(0.092) 

0.013 

(0.064) 

Prior Achievement
a
     

Bottom Quartile  
0.051 

(0.102) 

-0.036 

(0.087) 

-0.366 

(0.147) 

-0.199 

(0.105) 

2
nd

 Quartile  
-0.053 

(0.090) 

0.071 

(0.079) 

0.064 

(0.120) 

0.110 

(0.087) 

3
rd

 Quartile  
0.110 

(0.118) 

0.091 

(0.109) 

-0.082 

(0.121) 

0.054 

(0.091) 

Top Quartile  
0.021 

(0.119) 

0.210 

(0.109) 

-0.303 

(0.138) 

-0.189 

(0.101) 

Race, Gender & SES     

Black 
0.085 

(.058) 

0.070 

(0.052) 

-0.158 

(0.088) 

-0.050 

(0.064) 

Hispanic 
-0.105 

(0.110) 

0.191 

(0.097) 

-0.180 

(0.097) 

-0.027 

(0.069) 

White/Other 
-0.289 

(0.203) 

-0.060 

(0.161) 

-0.342 

(0.312) 

-0.113 

(0.219) 

Male 
0.096 

(0.069) 

0.060 

(0.062) 

-0.277 

(0.090) 

-0.126 

(0.064) 

Female 
-0.055 

(0.075) 

0.119 

(0.066) 

-0.004 

(0.094) 

0.033 

(0.070) 

Free Lunch 
0.030 

(0.052) 

0.083 

(0.046) 

-0.161 

(0.066) 

-0.038 

(0.048) 

No Free Lunch 
0.134 

(0.239) 

0.213 

(0.213) 

-0.188 

(0.252) 

-0.140 

(0.180) 
Notes for Table 8: Each cell includes an estimate from a separate 2SLS regression that controls for year fixed effects 

and all of the additional performance and demographic variables listed in the notes to Table 2.  a Prior achievement is 

measured as the average math and reading score in second or fifth grade.  Quartiles are determined on the basis of 

students in this sample.  A small number of students who were missing second or fifth grade test scores are excluded 

from this categorization. 

 

 

 



 

Table 9 

The Two-Year Effect of Summer School on Student Achievement 

 
Plausible  

 Lower Bound 

Estimated Effect 

(% of annual 

learning gain) 

Plausible  

Upper Bound 

Third Grade    

Reading  -0.009 
0.053  

(12.5%) 
0.116 

Math  0.010 
0.072  

(11.7%) 
0.135 

Sixth Grade     

Reading  -0.019 
0.031 

(5.5%) 
0.081 

Math  -0.022 
0.028 

(5.8%) 
0.078 

Notes for Table 9:  The estimated summer school treatment effects are computed using the third difference two-year 

net effect estimates from Table 3 and the retention treatment effects from Table 6.  We compute the treatment effect 

of the summer bridge program by removing that portion of the effect that could be caused by retention.  For third and 

sixth grade, we compute lower and upper estimates by adding and subtracting 0.25 logits to point estimates of the 

retention treatment effects. 

 

 


