GERALD R. FORD SCHOOL OF PUBLIC POLICY EDUCATION POLICY INITIATIVE UNIVERSITY OF MICHIGAN

Measuring Instructor Effectiveness in Higher Education

Pieter De Vlieger, University of Michigan
Brian Jacob, University of Michigan
Kevin Stange, University of Michigan

Education Policy Initiative
Gerald R. Ford School of Public Policy
735 S. State Street
Ann Arbor, Michigan 48109

Measuring Instructor Effectiveness in Higher Education*

Pieter De Vlieger, University of Michigan
Brian Jacob, University of Michigan
Kevin Stange, University of Michigan

Originally posted as NBER
Working Paper 22998
Issued December 2016

November 30, 2016

Abstract

Instructors are a chief input into the higher education production process, yet we know very little about their role in promoting student success. This is in contrast to elementary and secondary schooling, for which ample evidence suggests teacher quality is an important determinant of student achievement. Whether colleges could improve student and institutional performance by reallocating instructors or altering personnel policies hinges on the role of instructors in student success. In this paper we measure variation in postsecondary instructor effectiveness and estimate its relationship to overall and coursespecific teaching experience. We explore this issue in the context of the University of Phoenix, a large for-profit university that offers both online and in-person courses in a wide array of fields and degree programs. We focus on instructors in the college algebra course that is required for all BA degree program students. We find substantial variation in student performance across instructors both in the current class and subsequent classes. Variation is larger for in-person classes, but is still substantial for online courses. Effectiveness grows modestly with course-specific teaching experience, but is unrelated to pay. Our results suggest that personnel policies for recruiting, developing, motivating, and retaining effective postsecondary instructors may be a key, yet underdeveloped, tool for improving institutional productivity.

We very grateful to Hinrich Eylers and Ashok Yadav at the University of Phoenix for many discussions and for providing access to the data. This paper was prepared for the NBER Conference "Productivity in Higher Education" * held on June 1, 2016. We also are grateful for useful feedback from Caroline Hoxby and other participants at the conference and at the University of Michigan Causal Inference in Education Research Seminar.
© 2016 by Pieter De Vlieger, Brian Jacob and Kevin STange. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

I. Introduction

Professors and instructors are a chief input into the higher education production process, yet we know very little about their role in promoting student success. There is growing evidence that teacher quality is an important determinant of student achievement in K12, with some school districts identifying and rewarding teachers with high value-added. Yet relatively little is known about the importance of or correlates of instructor effectiveness in postsecondary education. Such information may be particularly important at the post-secondary level, in which administrators often have substantial discretion to reallocate teaching assignments not only within a specific class of instructors (e.g., tenured faculty), but across instructor types (e.g., adjuncts vs. tenured faculty).

There are a number of challenges to measuring effectiveness in the context of higher education. Unlike the K12 context, there are rarely standardized test scores to use as an outcome. Furthermore, to the extent that college courses and majors intend to teach a very wide variety of knowledge and skills, it is harder to imagine an appropriate outcome as a conceptual matter. The issue of non-random student sorting across instructors is arguably more serious in the context of higher education because students have a great deal of flexibility in the choice classes and the timing of these classes. Finally, one might have serious concerns about the attribution of a particular skill to a specific instructor given the degree to which knowledge spills over across courses in college (e.g., the importance of calculus in intermediate microeconomics or introductory physics, the value of English composition in a history classes where the grade is based almost entirely on a term paper, etc.) For many reasons, the challenge of evaluating college instructors is more akin to the problem of rating physicians.

This paper addresses two main questions. First, is there variation in instructor effectiveness in higher education? We examine this in highly standardized setting where one would expect minimal variation in what instructors actually do. Second, how does effectiveness correlate with teaching experience and salary? This informs whether teaching assignment and personnel policies could be used to increase effectiveness and institutional productivity. We examine these questions using detailed administrative data from the University of Phoenix (UPX), the largest university in the world, which offers both online and in-person courses in a wide array of fields and degree programs. We focus on instructors in the college algebra course that is required for all students in BA degree programs and that often is a roadblock to student attainment.

This context provides several advantages. Our sample includes more than two thousand instructors over more than a decade in campuses all across the United States. This allows us to generate extremely precise estimates, and to generalize to a much larger population than has been the case in previous studies. Most students in these courses take a common, standardized assessment that provides an objective outcome by which to measure instructor effectiveness. And, as we describe below, student
enrollment and course assignment is such that we believe the issue of sorting is either non-existent (in the case of the online course) or extremely small (in the case of face-to-face or FTF courses).

The UPX is different than what some might think of as the "traditional" model of higher education, in which tenured faculty at selective institutions teach courses they develop themselves. UPX is a for-profit institution with contingent (i.e., non-tenured, mostly part-time) faculty, and the courses are highly standardized, with centrally prepared curriculum materials and assessments (both online and face-to-face sections). So, while our findings may not generalize to all sectors of higher education, we believe it will be relevant for the growing for-profit sector and possibly less-selective 4 -year and community colleges that share many of these same traits. A limitation of prior research is that it focuses on largely selective non-profit or public institutions, which are quite different from the non-selective or for-profit sectors. It is in these settings with many contingent faculty and institutions whose primary purpose is instruction (rather than, say, research) where productivity-driven personnel policies could theoretically be adapted.

We find substantial variation in student performance across instructors. A 1 SD increase in instructor quality is associated with 0.30 SD increase in grades in current course and a 0.20 SD increase in grades in the subsequent course in the math sequence. Unlike some prior work (Carrell and West 2010), we find a positive correlation between instructor effectiveness measured by current and subsequent course performance overall and for face-to-face courses. The variation in instructor effectiveness is larger for inperson courses, but still substantial for online courses. These broad patterns and magnitudes are robust to extensive controls to address any possible non-random student sorting, using test scores that are less likely to be under the control of instructors, and other specification checks. These magnitudes are substantially larger than found in the K12 literature and in the Carrell and West (2010) study of the Air Force Academy, but comparable to the recent estimates from DeVry University (Bettinger at al. 2015). Furthermore, instructor effects on future course performance has little correlation with student end-ofcourse evaluations, the primary metric through which instructor effectiveness is currently judged.

Salary is primarily determined by tenure (time since hire), but is mostly uncorrelated with measured effectiveness or course-specific teaching experience, both in the cross-section and for individual teachers over time. However, effectiveness grows modestly with course-specific teaching experience but is otherwise unrelated to time since hire. Given the disconnect between pay and effectiveness, the performance differences we uncover translate directly to differences in productivity from the University's perspective. These large productivity differences imply that personnel decisions and policies that attract, develop, allocate, motivate, and retain faculty are a potentially important tool for improving student success and productivity at the University of Phoenix. Our study institution - like almost all others - measures faculty effectiveness through optional student end-of-course evaluations,
despite only minimal correlation between evaluation scores and our measures of effectiveness. Thus current practices are not doing a great job of identifying or supporting effective instructors. Though policy-makers and practitioners have recently paid a lot of attention to the importance of teachers in elementary and secondary school, there is surprisingly little attention paid to the importance of instructors or instructor-related policies and practices at the postsecondary level.

The remainder of this paper proceeds as follows. We discuss prior evidence on college instructor effectiveness and our institutional context in Section II. Section III introduces our administrative data sources and our analysis sample. Section IV presents our empirical approach and examines the validity of our proposed method. Our main results quantifying instructor effectiveness are presented in Section V. Section VI examines how instructor effectiveness correlates with experience. Section VII concludes by discussing the implications of our work for institutional performance and productivity.

II. Prior Evidence and Institutional Context

A. Prior Evidence

There is substantial evidence that teacher quality is an important determinant of student achievement in elementary and secondary education (Rockoff, 2004; Rivkin, Hanushek, and Kain, 2005; Rothstein, 2010; Chetty, Friedman, Rockoff, 2014). Many states and school districts now incorporate measures of teacher effectiveness into personnel policies in order to select and retain better teachers (Jackson, Rockoff, Staiger, 2014). Yet little is known about instructor effectiveness in postsecondary education, in part due to difficulties with outcome measurement and self-selection. Standardized assessments are rare and grading subjectivity across professors makes outcome measurement difficult. In addition, students often choose professors and courses, so it is difficult to separate instructors' contribution to student outcomes from student sorting. As a consequence of these two challenges, only a handful of existing studies examine differences in professor effectiveness.

Several prior studies have found that the variance of college instructor effectiveness is small compared to what has been estimated for elementary teachers. Focusing on large, introductory courses at a Canadian research university, Hoffmann and Oreopoulos (2009a) find the standard deviation of professor effectiveness in terms of course grades is no larger than 0.08 . Carrell and West (2010) examine students at the U.S. Air Force Academy, where grading is standardized and students have no choice over coursework or instructors. They find sizeable differences in student achievement across professors teaching the same courses, roughly 0.05 SD , which is about half as large as in the K 12 sector. Interestingly, instructors that were better at improving contemporary performance received higher teacher evaluations but were less successful at promoting "deep-learning", as indicated by student performance in subsequent courses. Braga, Paccagnella, Pellizzari (2016) estimate teacher effects on both student
academic achievement and labor market outcomes at Bocconi University. They also find significant variation in teacher effectiveness, roughly 0.05 SD both for academic and labor market outcomes. They find only a modest correlation of instructor effectiveness in academic and labor market outcomes.

Two recent studies have concluded that instructors play a larger role in student success. Bettinger, Fox, Loeb, and Taylor (2015) examine instructor effectiveness using data from DeVry University, a large for-profit institution in which the average student takes two-thirds of her courses online. They find a variance of instructor effectiveness that is substantially larger than prior studies in higher education. Specifically, they find that being taught by an instructor that is 1 SD more effective improves student course grades by about 0.18 to 0.24 SD . The estimated variation is 15% lower when courses are online, even among instructors that teach in both formats. Among instructors of economics, statistics, and computer science at an elite French public university, Brodaty and Gurgand (2016) find that a 1 SD increase in teacher quality is associated with a 0.14 or 0.25 SD increase in student test scores, depending on the subject.

A few studies have also examined whether specific professor characteristics correlate with student success, though the results are quite mixed. ${ }^{1}$ Using institutional-level data from a sample of U.S. universities, Ehrenberg and Zhang (2005) examine the effects of adjuncts (part-time faculty) on student dropout rates. They find a negative relationship between the use of adjuncts and student persistence, though they acknowledge that this result could stem, in part, from non-random sorting of students across schools. Hoffmann and Oreopoulos (2009a) find no relationship between faculty rank (including adjuncts and tenure-track faculty) and subsequent course enrollment. Two other studies find positive effects of adjuncts. Studying course-taking among students in public four-year institutions in Ohio, Bettinger and Long (2010) find adjuncts are more likely to induce students to take further courses in the same subject. Using a sample of large, introductory courses taken by first-term students at Northwestern University, Figlio, Schapiro, and Soter (2013) find that adjuncts are positively associated with subsequent coursetaking in the subject as well as performance in these subsequent courses. In their study of the U.S. Air Force Academy, Carrell and West (2010) find that academic rank, teaching experience, and terminal degree are positively correlated with follow-on course performance, though negatively related to contemporary student performance.

There is also evidence that gender and racial match between students and instructors influences students' interest and performance (Bettinger and Long, 2005; Hoffmann and Oreopoulos, 2009b; Fairlie, Hoffmann, Oreopoulos, 2014). Finally, Hoffmann and Oreopoulos (2009a) find that students' subjective evaluations of professors are a much better predictor of student academic performance than objective professor characteristics such as rank. This echoes the finding of Jacob and Lefgren (2008) that

[^0]elementary school principals can identify effective teachers, but that observed teacher characteristics tend to explain little of teacher effectiveness.

A limitation of this prior research is that it focuses largely on selective non-profit or public institutions, which are quite different from the non-selective or for-profit sectors that constitute a large and growing share of the postsecondary sector. It is in these settings with many contingent faculty and institutions whose primary purpose is instruction (rather than, say, research) where productivity-driven personnel policies could theoretically be adapted. Students at these types of institutions also have lower rates of degree completion, so facilitating these students' success is thus particularly important policy goal. The one prior study examining a setting similar to ours (Bettinger et al's 2015 study of Devry University) focuses on differences in student performance between online and in-person formats, with very little attention paid to instructors. The simultaneous consideration of multiple outcomes and how the exploration of how effectiveness varies with salary and teaching experience is also novel in the postsecondary literature.

B. Context: College Algebra at The University of Phoenix

We study teacher effectiveness in the context of the University of Phoenix, a large for-profit university that offers both online and face-to-face (FTF) courses. UPX offers a range of programs, including AA, BA and graduate degrees, while also offering à-la carte courses. We focus on core mathematics courses, MTH/208 and MTH/209 (College Mathematics I and II), which are a requirement for most BA programs. Below we describe these courses, the process through which instructors are hired and evaluated, and the mechanism through which students are allocated to instructors. ${ }^{2}$

MTH208 and MTH209

BA-level courses at UPX are typically five weeks in duration and students take one course at a time (sequentially), in contrast to the typical structure at most universities. The MTH/208 curriculum focuses on setting up algebraic equations and solving single and two-variable linear equations and inequalities. Additionally, the coursework focuses on relating equations to real-world applications, generating graphs, and the use of exponents. MTH/209 is considered a logical follow-up course, focusing on more complicated, non-linear equations and functions. Students in our sample take MTH208 after completing about eight other courses, so enrollment in the math course sequence does signify a higher level of commitment to the degree program than students in the most entry-level courses. However, many students struggle in these introductory math courses and they are regarded by UPX staff as an important obstacle to obtaining a BA for many students.

[^1]Students can take these courses online or in-person. In the face-to-face sections, students attend four hours of standard in-class lecture per week, typically held on a single day in the evening. In addition, students are required to work with peers roughly four hours per week on what is known as "learning team" modules. Students are then expected to spend 16 additional hours outside of class reading material, working on assignments and studying for exams. ${ }^{3}$

Online courses are asynchronous, which means that a set of course materials is provided through the online learning platform, and instructors provide guidance and feedback through online discussion forums and redirect students to relevant materials when necessary. There is no synchronous or face to face interaction with faculty in the traditional sense, but students are required to actively participate in online discussions by substantively posting six to eight times per week over three to four days. One instructor defined a substantive post as having substantial math content:

Substantial math content means you are discussing math concepts and problems. A substantive math post will have at least one math problem in it. Simply talking "around" the topic (such as, "I have trouble with the negative signs" or "I need to remember to switch the signs when I divide by a negative coefficient") will not be considered substantive. (Morris, 2016).

Online participation is the equivalent of the four hours of classes for the FTF sections. ${ }^{4}$
There are substantial differences between the two course modes in terms of curriculum and grading flexibility. Both courses have standardized course curricula, assignments, and tests that are made available to the instructors. Grading for these components is performed automatically through the course software. However, FTF instructors sometimes provide students with their own learning tools, administer extra exams and homework, or add other components that are not part of the standard curriculum. In contrast, online instructors mainly take the course materials and software as given, and interaction with students for these teachers is mainly limited to the online discussion forum. In both online and FTF courses, teachers are able to choose the weights they assign to specific course components for the final grade. As discussed below, for this reason we also use student performance on the final exam as an outcome measure.

Hiring and allocation of instructors

The hiring and onboarding process of teachers is managed and controlled by a central hiring committee that is hosted at the Phoenix campus, though much input comes from local staff at ground campuses.

[^2]First, this committee checks whether a new candidate has the appropriate degree. ${ }^{5}$ Second, qualified candidates then go through a five-week standardized training course they need to pass. This includes a mock lecture for FTF instructors and a mock online session for online instructors. Third, and finally, an evaluator sits in on the first class or follows the online course to ensure the instructor performs according to university standards. Salaries are relatively fixed, but do vary somewhat with respect to degree and tenure. ${ }^{6}$ We should note that the actual hiring process for instructors may deviate from this description for certain campuses or in time periods when positions are particularly difficult to fill.

The allocation of instructors to classes is essentially random for online classes. About 60 MTH/208 sections are started weekly and the roster is only made available to students two or three days before the course starts, at which point students are typically enrolled. The only way to sidestep these teacher assignments is by dropping the course altogether and enrolling in a subsequent week.

For FTF sections, the assignment works differently, since most campuses are too small to have different sections concurrently and students may need to wait for a few months if they decide to take the next MTH/208 section at that campus. While this limits the ability of students to shop around for a better teacher, the assignment of students to these sections is likely to be less random than for online sections. For this reason, we rely on value-added models that control for a host of student-specific characteristics that may correlate with both instructor and student course performance.

Evaluation and retention of instructors

UPX has in place three main evaluation tools to keep track of the performance of instructors. First, instructors need to take a yearly refresher course on teaching methods, and an evaluator will typically sit in or follow an online section every year to ensure the quality of the instructor still meets the university's requirements. Second, there is an in-house data analytics team that tracks key performance parameters. These include average response time to questions asked through the online platform, or indicators that students in sections are systematically getting too high (or too low) overall grades. For instance, if instructors consistently give every student in a section full or very high marks, this will raise a flag, and the validity of these grades will be verified. Finally, additional evaluations can be triggered if students file complaints about instructor performance. If these evaluation channels show the instructor has not met the standards of the university, the instructor receives a warning. Instructors that have received a warning are followed up more closely in subsequent courses. If the instructor performance does not improve, the university will not hire the person back.

[^3]
III. Data

We investigate variation in instructor effectiveness using data drawn from administrative UPX records. This section describes these records, the sample selection, and descriptive statistics. While the data we analyze has very rich information about the experiences of students and instructors while at the University of Phoenix, information on outside activities is limited.

A. Data Sources

We analyze university administrative records covering all students and teachers who have taken or taught MTH/208 at least once between July 2000 and July 2014. The raw data contains information on 2,343 instructors that taught 34,725 sections of MTH/208 with a total of 396,038 student-section observations. For all of these instructors and students, we obtain the full teaching and course-taking history back to 2000. ${ }^{7}$ Our analysis spans 84 campuses (plus the online campus). There is typically one campus per city, but some larger metropolitan areas have multiple physical locations (branches) at which courses are offered. ${ }^{8}$

Instructors

We draw on three information sources for instructor level characteristics. A first dataset provides the full teaching history of instructors that have ever taught MTH/208, covering 190,066 class sections. Information includes the campus and location of instruction, subject, the number of credits, and start date and end date of the section.

For each instructor x section observation, we calculate the instructor's teaching load for the current year, as well as the number of sections he or she had taught in the past separately for MTH/208 and other courses. This allows us to construct a variety of different experience measures, which we use in the analysis below. As the teaching history is censored before the year 2000, we only calculate the cumulative experience profile for instructors hired in the year 2000 or later.

The second dataset contains self-reported information on ethnicity and gender of the instructor, along with complete information on the date of first hire, the type of employment (full-time or part-time) and the zip code of residence. ${ }^{9}$ A unique instructor identifier allows us to merge this information onto the

[^4]MTH/208 sections. ${ }^{10}$ A third dataset contains the salary information for the instructor of each section, which can be merged onto the $\mathrm{MTH} / 208$ sections using the unique section identifier.

Students

Student level information combines four data sources: demographics, transcript, assessment, and student end-of-course evaluations. The demographics dataset provides information on the zip code of residence, gender, age of the student, program the student is enrolled in, program start, and program end date. ${ }^{11}$ A unique student identifier number allows us to merge this information onto the course-taking history of the student.

Transcript data contains complete course-taking history including the start and end date of the section, campus of instruction, grade, and number of credits. Every section has a unique section identifier that allows for matching students to instructors. Additionally, student level information includes course completion, course grade, earned credits, along with a unique student identifier that allows for merging on the student demographics.

Moreover, for sections from July 2010 to March 2014, or roughly 30 percent of the full sample, we have detailed information on student performance separately by course assignment or assessment, which includes everything from individual homework assignments to group exercises to exams. We use this data to obtain a final exam score for each student when available. Because the data does not have a single, clear code for final exam component across all sections, and instructors have discretion to add additional final exam components, we use a decision rule to identify the "best" exam score for each student based on the text description of the assessment object. Approximately 11% of observations have a single score clearly tied to the common computer-administered final assessment, 77% have a single assessment for a final exam (but we cannot be certain it is from the standardized online system), and the remainder have final exam assessments that are a little more ambiguous. Discussions with UPX personnel indicated that the vast majority of instructors use the online standardized assessment tool with no customization, but unfortunately this is not recorded in the administrative data. Nonetheless, results excluding this latter group are quite similar to analysis with the full sample. Our approach is outlined in Appendix B.

While the analysis focuses on course grades and final test scores, it also considers future performance measures, such as grades and cumulative grade point average earned in the 180 or 365 days

[^5]following the MTH/208 section of interest. Given the linear, one-by-one nature of the coursework, these measures capture the effect instructors have on moving students towards obtaining a final degree.

Finally, for sections taught between March 2010 and July 2014, we obtained student end-ofcourse evaluations. Students are asked whether they would recommend the instructor on a ten point scale. Recommendation scores of 8 or above are considered "good" and are the primary form that the evaluations are used by the University of Phoenix administration. We follow this practice and use a binary indicator for whether the recommendation score is at least 8 as our primary evaluation measure. End of course evaluations are optional for students so have a relatively low response rate. Only 37% of students provide a course evaluation score for Math 208, which is less than half of the students that have a final exam test score for Math 208. While non-random missing evaluations could create bias in our estimates of teacher effectiveness, this bias is also present in the evaluations as used by the institution. Our goal is to see how evaluations as currently used in practice correlate with more objective measures of teacher effectiveness.

Census data

In addition to the UPX administrative school records, we use several census data resources to get additional variables capturing the characteristics of students' residential neighborhoods. In particular, we obtain the unemployment rate, median family income, the percentage of family below the poverty line, and the percentage with a bachelor degree or higher of students' home zip code, from the 2004-2007 fiveyear ACS files.

B. Sample Selection

Starting from the raw data, we apply several restrictions on the data to obtain the primary analysis sample. We restrict our analysis to the 33,200 Math 208 sections that started between January 2001 and July 2014. We then drop all students with missing data for final grade or unusual grades $(0.1 \%$ of students) as well as students who do not show up in the student demographics file (0.3% of remaining students). ${ }^{12}$ We then drop all cancelled sections (0.02 percent of the sections), sections with fewer than 5 enrolled students who had non-missing final grade and did not withdraw from the course (11.4 percent of the remaining sections) and sections for which the instructor is paid less than $\$ 300$ (5.2 percent of remaining sections). We believe the final two restrictions exclude sections that were not actual courses, but rather independent studies of some sort. We also drop sections for which the instructor does not show up in the teacher demographics file, which is 3.5 percent of the remaining sections.

[^6]To calculate instructor experience, we use an instructor-section panel that drops observations where there is no salary information (about 3% of sections), the section was cancelled (0.04%), and with less than 5 students (21.7% of the remaining sections) or for which instructor is paid less than $\$ 300(8.6 \%$ of the remaining sections). As above, these final two restrictions are meant to exclude independent study type courses or other unusual courses that may enter differently into the teacher human capital function. ${ }^{13}$ We then calculate several experience measures based on this sample. We calculate measures of experience such as number of courses taught in the previous calendar year and total cumulative experience in MTH208 specifically and in other categories of classes. The complete cumulative experience measures are only fully available for instructors that were hired after 2000, since the teaching history is not available in prior years.

Finally, we drop data from nine campuses because none of the instructors we observe in these campuses ever taught in another physical campus or online. As discussed in the section below, in order to separately identify campus and instructor fixed effects, each campus must have at least one instructor that has taught in a different location. Fortunately, these nine campuses represent only 2 percent of the remaining sections and 4 percent of remaining instructors.

The final analysis sample consists of 339,844 students in 26,384 sections, taught by 2,243 unique instructors. The sub-sample for which final exam data is available includes 94,745 students in 7,232 Math 208 sections taught by 1,198 unique instructors. We calculate various student characteristics from the transcript data, including cumulative grade point average and cumulative credits earned prior to enrolling in MTH208, as well as future performance measures. In the rare case of missing student demographics, we set missing to zero and include an indicator variable for missing.

C. Descriptive statistics

We report key descriptive statistics for the final analysis sample, spanning January 2001 to July 2014, in Table 1. We report these statistics for all sections, and for FTF and online sections separately. Table 1a reports section and instructor characteristics for the 26,384 Math 208 sections, while Table 1b reports student background characteristics and student performance measures. About half of all sections are taught online, and instructors are paid about $\$ 950$ for teaching a course, regardless of the instruction mode. ${ }^{14}$ Instructors are majority white and male and have been at the university just under five years. They typically have taught more than 40 total course sections since joining the faculty, of which 15 were

[^7]Math 208 and 10 were Math 209. Instructors teaching online sections tend to specialize more in teaching Math 208 compared to their counterparts teaching FTF sections. Class size is about 13 students and is slightly larger for FTF than online sections. Tables A1a and A1b in the appendix report descriptive statistics for the sample for which test scores are available (July 2010 - March 2014). The test score sample is quite similar to the full sample, though the instructors are typically more experienced.

Table 1 b provides an overview of student characteristics and performance. The students enrolled in these sections tend to be female, around 35 years old, and typically have taken 23 credits worth of classes at UPX, earning a GPA of 3.35, when beginning MTH208. Students in online sections tend to have earned somewhat fewer credits than their counterparts in FTF sections, and are more likely to have taken Math 208 before. Most students, both in FTF and online sections, are enrolled in a business or general studies program.

Students across both modes of instruction are equally likely to earn a grade of A (about 32\%) or B (about 27%) and have similar final exam scores (70%) when available. Consistent with prior work, online students are more likely to withdraw from and less likely to pass MTH208 than students in FTF sections. In terms of student performance after taking Math 208, we find that FTF students are more likely to go on and take Math 209. ${ }^{15}$ Students earn about 10.5 credits in the six months following the Math 208 section, with a two-credit gap between FTF and online students. Participation in end-of-course evaluations is similar across formats, though FTF students generally report a greater level of instructor satisfaction.

IV. Empirical Approach

Our main aim is to characterize the variation in student performance across instructors teaching the same courses. Consider the standard "value-added" model of student achievement given in equation (1):

$$
\begin{equation*}
Y_{i j k t}=\beta_{1} X_{i}+\beta_{2} Z_{j k t}+\emptyset_{t}+\theta_{k}+e_{i j k t} \tag{1}
\end{equation*}
$$

where $Y_{i j k t}$ is the outcome of student i in section j taught by instructor k during term t . The set of parameters θ_{k} quantify the contribution of instructor k to the performance of their students, above and beyond what could be predicted by observed characteristics of the student $\left(X_{i}\right)$, course section $\left(Z_{j k t}\right)$, or time period. The variance of θ_{k} across instructors measures the dispersion of instructor quality and is our primary parameter of interest. We are particularly interested in how the distribution of θ_{k} varies across outcomes and formats, and how effectiveness covaries across outcomes.

[^8]Estimation of the standard value-added model in (1) must confront three key issues. First, nonrandom assignment of students to instructors or instructors to course sections could bias value-added models. In the presence of non-random sorting, differences in performance across sections could be driven by differences in student characteristics rather than differences in instructor effectiveness per se. Second, outcomes should reflect student learning rather than grading leniency or "teaching to the test" of instructors. Furthermore, missing outcomes may bias instructor effects if follow-up information availability is not random. Third, our ability to make performance comparisons between instructors across campuses while also controlling for cross-campus differences in unobserved student factors relies on the presence of instructors that teach at multiple campuses. We address each of these in turn below.

A. Course and Instructor Assignment

In many education settings, we worry about non-random assignment of instructors to sections (and students) creating bias in VA measures (Rothstein, 2009; Chetty, Friedman, Rockoff, 2014). In general, we believe that there is relatively little scope for sorting in our setting. Students do not know much about the instructor when they enroll, and instructors are only assigned to specific sections about two days before the start of the course for online sections. Students who have a strong preference with regard to instructor can choose to drop the course once they learn the instructor's identity, but this would mean that they would likely have to wait until the start of the next session to take the course, at which point they would be randomly assigned to a section again. According to UPX administrators, there is no sorting at all in online courses, which is plausible given the very limited interaction students with have with instructors in the initial meetings of the course. UPX admits the possibility of some sorting in FTF courses, but believe this is likely minimal.

To explore the extent of sorting, we conduct two types of tests. First, we test whether observable instructor characteristics correlate with the observable characteristics of students in a section. To do so, we regress mean student characteristics on instructor characteristics, where each observation is a course section. ${ }^{16}$ Table 2 reports the estimates from three regression models which differ in terms of the type of fixed effects that are included. Once we include campus fixed effects, there are very few systematic correlations between student and instructor characteristics and any significant relationships are economically insignificant. To take one example, consider incoming student GPA, which is the single biggest predictor of student success in MTH208. Whether the instructor was hired in the last year is statistically significantly related to incoming student GPA once campus fixed effects are included, yet this difference is only 0.012 grade points, or 0.3% of the sample mean. Similar patterns are seen for all other

[^9]observable student and instructor characteristics we examine. In results not reported here, but available upon request, we continue to find no significant relationship between instructor and student characteristics for subsamples limited to only online sections and to sections with final exam scores.

In addition, we follow the procedure utilized by Carrell and West (2010) to test whether the distribution of student characteristics across sections are similar to what you would get from random assignment within campus and time.). In a first step, we take the pool of students in a campus-year cell, randomly draw sections of different sizes (based on the actual distribution), and compute the statistic of interest for these random sections. Similar to test 1 , the statistics of interest are average age, fraction male, average prior credits, and average prior GPA. By construction, the resulting distribution of these sectionlevel characteristics is obtained under random assignment of students to sections. In a second step, we take each actual section and compare the actual student average of each baseline characteristic to the counterfactual distribution for the relevant campus-year combination by calculating the p-value. For instance, we take a section, compute the average age, and compute the fraction of counterfactual sections with values smaller than the actual value. For each campus-year combination, we therefore obtain a number of p-values equal to the number of sections held at that campus-year combination. In a final step, we test for random assignment by testing the null hypothesis that these p -values are uniformly distributed. Intuitively, we are equally likely to draw any percentile under random assignment, which should result in these p -values having a uniform distribution. If, for instance, we have systematic sorting of student according to age, we would find we are more likely to find low and high percentiles, and the p-values would not exhibit a uniform distribution

Similar to Carrell and West (2010), we test the uniformity of these p-values using the Chi-square goodness-of-fit test, and a Kolmogorov-Smirnov test with a 5% significance level. We draw counterfactual distributions at the campus-year level, leading to 763 tests of the null hypothesis of uniformity of the p-values. We find that the null hypothesis is rejected in 56 cases using the Chi-square goodness-of-fit test, and in 51 cases using the Kolmogorov-Smirnov test, which is about 6-7\%. Given that the significance level of these tests was 5%, we conclude that these tests do not reject the null hypothesis of random assignment of students to sections for these specific observables.

B. Outcomes

Unlike the elementary and secondary setting in which teacher effectiveness has been studied extensively using standardized test scores, appropriate outcomes are more difficult to identify in the higher education context. Following prior studies in the literature, we examine not only contemporaneous course performance as measured by students' course grades, but also enrollment and performance (measured by grades) in subsequent courses in the same subject.

An important limitation of grades as a measure of course performance is that they reflect, at least in part, different grading practices. This may be particularly worrisome in the context of FTF courses at UPX because many students have the same instructor for Math 208 and 209. Thus lenient or subjective grading practices in 208 may be correlated with the same practices in 209, meaning that the Math 209 grade is not an objective measure of long-run learning from Math 208. For a subset of our sample, we are able to examine student performance on the final examination for Math 208 and/or Math 209. It also is informative to compare test-based measures to grade-based measures simply because the grade-based measures are easier for the universities to implement. It is informative to know how far from the more "objective" measures using course grades deviates. In order to maximize sample coverage we first look at course grades and credits earned, but then also look at final exam scores (for a smaller sample).

A practical challenge with both grade and test score outcomes is that they may not be observed for students that do not persist to the final exam in MTH208 or who do not enroll in MTH209. Our main analysis imputes values for these outcomes where missing, though we also assess the consequences of this imputation. Our preferred method assumes that students who chose not to enroll in MTH209 would have received a failing grade and those without test scores would have received a score at the tenth percentile of the test score distribution from their MTH208 class. Generally results are not sensitive to imputation method used. We also look directly at the likelihood of enrolling in MTH209 or of having non-missing final exam scores as outcomes.

Persistence is less susceptible to these concerns. Given that roughly one-quarter of the sample either withdraw or fail Math 208, and an equal fraction fail to take Math 209 at any point, it is interesting to look at whether students eventually take Math 209 as an outcome. The number of credits accumulated in the six months following Math 208 is another outcome we examine that is also less susceptible to instructor leniency and missing value concerns.

C. Cross-campus comparisons

A third challenge in estimating instructor effectiveness is that unobservable differences between students across campuses may confound instructor differences. This is the rationale for controlling for campus fixed effects in equation (1). But separately identifying campus and instructor effects requires that a set of instructors teach in multiple campuses. ${ }^{17}$ For example, if an instructor's students do particularly well, it is impossible to say whether this reflects the contribution of the instructor herself or unobserved campus phenomenon, such as the campus-specific facilities or student peers. Observing instructors across multiple
${ }^{17}$ Including fixed effects for each of the 200 physical locations requires instructors that teach at multiple locations within each campus. Within-campus switching is more common than cross-campus switching, and thus location fixed effects are only slightly more problematic than campus fixed effects.
campuses permits the separation of these two phenomenon and permit instructors across campuses to be ranked on a common scale. This is analogous to the concern in studies that attempt to simultaneously estimate firm and worker effects as well as the literature that measures teacher value-added at the K12 level. Most prior work on postsecondary instructors has focused on single campus locations and thus not confronted the cross-campus comparison problem.

The existence of the online courses, and the fact that a sizeable fraction of instructors teach both online and at a physical campus, provides the "connectedness" that allows us to separately identify campus and instructor effects. Appendix Table A2 reports the degree of "switching" that exists across campuses in our data. About 8 percent of the exclusively FTF instructors teach in more than one campus, and about 21 percent of the online instructors also teach at a FTF.

D. Implementation

We implement our analysis with a two-step procedure. In the first step, we first estimate the standard value-added model in (1) with OLS including a host of student characteristics, campus fixed effects, and instructor FEs $\left(\theta_{k}\right)$. Including θ_{k} 's as fixed effects permits correlation between $\theta_{k} \mathrm{~s}$ and X characteristics (including campus FEs), generating estimates of $\beta_{1}, \beta_{2}, \emptyset_{t}$, and δ_{c} that are purged of any non-random sorting by instructors (Chetty, Friedman, and Rockoff, 2014a). However, the estimated θ_{k} 's are noisy, so their variance would be an inaccurate estimate of the true variance of the instructor effects. We then construct mean section-level residuals for each outcome

$$
\begin{equation*}
\tilde{Y}_{j k t}=\sum_{i \in j}\left(Y_{i j k t}-\widehat{\beta_{1}} X_{i}-\widehat{\beta_{2}} Z_{j k t}-\widehat{\emptyset_{t}}-\widehat{\delta_{c}}\right) \tag{2}
\end{equation*}
$$

The section-level residuals $\tilde{Y}_{j k t}$ combine the instructor effects $\left(\theta_{k}\right)$ with any non-mean-zero unobserved determinants of student performance at the student- or section-level. Our fully-controlled first-stage model includes student characteristics (male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program), section averages of these individual characteristics, student zip code characteristics (unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code, plus missing ZIP) and total section enrollment. We control for aggregate temporal changes in unobserved student characteristics or grading standards by including calendar year and month fixed effects. Campus fixed effects control for any unobserved differences in student characteristics across campuses. Since the campus includes several physical locations for very large metro areas, as a robustness we replace campus fixed effects with effects for the specific physical location at which the class is taught. Finally, we also examine models with various subsets of these control variables and large sets of interactions between them.

In the second step, we use the mean residuals to estimate the variance of the instructor effects θ_{k} as random effects with maximum likelihood. ${ }^{18}$ For a single outcome, not distinguishing by mode, the model is simply $\tilde{Y}_{j k t}=\theta_{k}+\tilde{e}_{j k t}$. The error term $\tilde{e}_{j k t}$ includes any section-specific shocks and also any non-mean-zero student-level unobserved characteristics, both of which are assumed to be independent across instructors and time. Our preferred approach stacks outcomes and lets effectiveness vary by outcome with an unrestricted covariance matrix. For instance, for two outcomes ($\mathrm{o}=$ grade in MTH208, grade in MTH209) we estimate

$$
\begin{equation*}
\tilde{Y}_{j k t}^{o}=\theta_{k}^{M 208}\left(M 208{ }_{o j k t}\right)+\theta_{k}^{M 209}\left(M 209_{o j k t}\right)+\tilde{e}_{o j k t} \tag{3}
\end{equation*}
$$

where $M 208{ }_{o j k t}$ and $M 209_{o j k t}$ are indicators for MTH208 and MTH209 outcomes, respectively. ${ }^{19}$ The key parameters of interest are $\operatorname{SD}\left(\theta_{k}^{M 208}\right), \operatorname{SD}\left(\theta_{k}^{M 209}\right)$, and $\operatorname{Corr}\left(\theta_{k}^{M 208}, \theta_{k}^{M 209}\right)$. The benefit of stacking outcomes and estimating multiple outcomes simultaneously is that the correlation across outcomes is estimated directly. As noted by Carrell and West (2010), the estimate of $\operatorname{Corr}\left(\theta_{k}^{M 208}, \theta_{k}^{M 209}\right)$ from (3) will be biased in the presence of shocks common to all students in a given MTH208 section if those shocks have a positive correlation across outcomes. For instance, groups of students that are high performing in MTH208 (relative to that predicted by covariates) are also likely to do well in MTH209, independent of the MTH208 instructors' ability to influence MTH209 performance. For this reason, our preferred specification also includes section-specific shocks (random effects $\mu_{j k t}^{M 208}$ and $\mu_{j k t}^{M 209}$) with an unrestricted covariance matrix:

$$
\begin{equation*}
\tilde{Y}_{j k t}=\theta_{k}^{M 208}\left(M 208_{o j k t}\right)+\theta_{k}^{M 209}\left(M 209_{o j k t}\right)+\mu_{j k t}^{M 208}\left(M 208_{o j k t}\right)+\mu_{j k t}^{M 209}\left(M 209_{o j k t}\right)+\tilde{e}_{j k t} \tag{4}
\end{equation*}
$$

The $\operatorname{Corr}\left(\mu_{j k t}^{M 208}, \mu_{j k t}^{M 209}\right)$ captures any common shocks in MTH 208 that carry over into MTH 209 performance (regardless of instructor), such as unobserved student characteristics or similarities of environment between the classes (such as the same peers). The distribution of $\theta_{k}^{M 208}$ and $\theta_{k}^{M 209}$ is still estimated by systematic differences in student performance across sections taught by the same instructor, but now the correlation between these two effects nets out what would be expected simply due to the fact that individual students' performance in the two courses are likely to be correlated. Note that since the instructor and section effects are random effects (rather than fixed), their distributions are separately identified. Including section-specific random effects has no bearing on the instructor effects, but does

[^10]impact the estimated correlation between contemporary and follow-up course effectiveness. Analogous models are estimated separately by mode of instruction.

V. Results on Instructor Effectiveness

A. Main Results for Course Grades and Final Exam Scores

Table 3 reports our main estimates of the variances and correlations of MTH208 instructor effects for both grade and test score outcomes, overall and separately by mode of instruction. This base model includes our full set of student and section controls in the first stage, in addition to campus fixed effects. The first, fourth, and seventh columns report results without correlated section effects.

For the full sample, a one-standard deviation increase in MTH208 instructor quality is associated with a 0.30 and 0.20 standard deviation increase in student course grades in MTH208 and MTH209, respectively. In course grade points, this is a little larger than one grade step (going from a " B " to " $\mathrm{B}+$ "). Thus MTH208 instructors substantially affect student achievement in both the introductory and follow-on math courses. These estimates are statistically significant and quite a bit larger than effects found in prior research in postsecondary (e.g. Carrell and West, 2010) and elementary schools (Kane et al. 2008).

We also find that instructor effects in MTH208 and MTH209 are highly positively correlated (correlation coefficient $=0.70$). Including section-specific shocks that correlate across outcomes reduces (to 0.60) but does not eliminate this positive correlation. This tells us that MTH208 instructors that successfully raise student performance in MTH208 also raise performance in follow-on courses. Thus we do not observe the same negative tradeoff between contemporaneous student performance and "deep learning" highlighted by Carrell and West (2010).

Columns (5) and (8) split the full sample by whether the MTH208 section was held at a ground campus (face-to-face) or the online campus. Though slightly more than half of sections are held at ground campuses, they make up three-quarters of the instructors in the full sample. Instructor quality is slightly more variable at ground campuses than online (0.31 SD vs. 0.24 SD for MTH208), but with a much larger difference by format when measuring follow-on course performance (0.24 SD vs. 0.04 SD). There are a number of reasons that online instructors may have less variation in quality than face-to-face instructors. First, ground instructors have more discretion over course delivery and are more likely to modify the curriculum. Ground instructors also have more direct interaction with students. Both of these factors may magnify differences in their effectiveness in a ground setting. Second, personnel management is centralized for online sections, while many aspects of hiring, evaluation, and instructor training are done by individual campuses for ground sections. Finally, since faculty are not randomly assigned to section formats (FTF vs. online), variance differences across formats could reflect differences in instructor characteristics. For instance, if teaching experience relates to effectiveness and ground campuses have a greater variance of instructor experience, then this will be reflected in the variance of instructor quality.

Furthermore, if there is less non-random sorting of students to instructors (conditional on our extensive control variables) in online sections than in ground sections, this will inflate the estimated variance of instructors at ground campuses. Interestingly, instructor quality in contemporaneous and follow-on course performance are more positively correlated for face-to-face sections than for online sections, though estimates for the latter are quite imprecise and not terribly robust across specifications.

Course grades are problematic as a measure of student achievement to the extent that systematic differences across instructors reflect different grading policies or standards rather than student learning. We address this by examining student performance on normalized final course exams. ${ }^{20}$ Columns (3), (6), and (9) and Panel B of Table 3 restrict analysis to sections that start between June 2010 and March 2014, for which we have such exam scores. For FTF sections, the variance of instructor effects is actually larger when using final exam score rather than course grades: 0.49 compared with 0.30 . This is consistent with less effective teachers grading more easily than more effective teachers. In contrast, in online sections, the variance of instructor effects is smaller when using final exam score, consistent with less effective teachers grading more harshly. Effectiveness is also highly positively correlated (correlation $=0.61$) between contemporaneous and follow-on course performance. The weak correlation between contemporaneous and follow-on course performance for online MTH208 sections is also observed with final exam scores (in fact the point estimate of the correlation is negative), though it is imprecisely estimated and generally not robust (in magnitude or sign) across alternative specifications.

One way to interpret the magnitudes is to compare them to outcome differences by student characteristics. On the standardized final exam score, for instance, students that are ten years older score 0.15 SD lower and a one grade-point difference in GPA coming into the class is associated with a 0.46 SD difference in exam scores. So having an instructor that is 1 SD more effective produces a test score change that is larger than the gap between 25 and 35 year-olds and comparable to the performance gap between students entering the class with a 3.0 vs. a 2.0 GPA . So at least compared to these other factors which we know are important - age and prior academic success - instructors seem to be a quite important factor in student success.

One candidate explanation for the high positive correlation between instructor effects in contemporaneous and follow-on courses in the FTF setting is that many students have the same instructors for MTH208 and MTH209 at ground campuses. Fully 81\% of students in ground sections have the same instructor for MTH208 and MTH209, while fewer than 1% of students taking MTH208 online do. This difference in the likelihood of having repeat instructors could also possibly explain differences

[^11]between online and face-to-face formats. Having the same instructor for both courses could generate a positive correlation through several different channels. First, instructor-specific grading practices or tendency to "teach-to-the-test" that are similar in MTH208 and 209 will generate correlated performance across classes that does not reflect true learning gains. Alternatively, instructors teaching both courses may do a better job of preparing students for the follow-on course.

To examine this issue, Table 4 repeats our analysis on the subset of MTH208 face-to-face sections where students have little chance of having the same instructor for MTH209. We focus on situations where the instructor was not teaching any classes or MTH208 again in the next three months and where few ($<25 \%$) or no students take MTH209 from the same instructor. While instructor quality may influence some students' choice of MTH209 instructor, it is unlikely to trump other considerations (such as schedule and timing) for all students. Thus we view these subsamples as identifying situations where students had little ability to have a repeat instructor for other reasons. Though the number of sections is reduced considerably and the included instructors are disproportionately low-tenure, the estimated instructor effects exhibit a similar variation as the full sample, both for course grades and exam scores. The correlation between MTH208 and 209 instructor effects is reduced substantially for grades and modestly for test scores, but remains positive and significant for both, even with the most restricted sample. ${ }^{21}$

B. Robustness of Grade and Test Score Outcomes

Table 5 examines the robustness of our test score results to different first stage models. Our preferred first-stage model includes numerous student characteristics, section averages of these individual characteristics, total section enrollment, campus fixed effects, instructor fixed effects, calendar year fixed effects, and month fixed effects. Even models with only time controls (columns 1) exhibit patterns that are qualitatively similar to our base model, with substantial instructor quality variation, particularly for face-to-face sections. In fact, the extensive controls have little impact on estimates of instructor quality, suggesting minimal systematic non-random sorting of students to instructors based on observed characteristics (and possibly unobserved characteristics too). Even including incredibly flexible studentlevel controls (5) or fixed effects for each physical location of the class (6) has minimal impact on our estimates. ${ }^{22}$ The only consequential controls we include are campus fixed effects when combined with instructor fixed effects, which increase the estimated variance of instructor effects on MTH208 and MTH209 exam scores and reduce their correlation. For online sections, estimates of instructor effects do

[^12]not change at all across first stage specifications, but the estimated correlation across current and future course outcomes is not robust and very imprecisely estimated.

Table 6 addresses sample selection by assessing the robustness of our estimates to different ways of imputing missing outcomes, overall and separately by instructional mode. For grade outcomes, estimated instructor effects are quite similar regardless of whether MTH209 grades are imputed if a student does not take MTH209. Our preferred method for test scores assumes that students without test scores would have received a score at the tenth percentile of the test score distribution from their MTH208 class. The results are generally quite similar, qualitatively and quantitatively, across imputation methods (including no imputation by only using test scores for the select sample of students with test scores). These results suggest that the substantial differences across instructor s and the positive (overall and for FTF sections) correlation across contemporary and follow-up course outcomes is not driven by non-random selection of students into test score and follow-up course outcomes.

C. Student Evaluations and Other Outcomes

Course grades and final exam performance are two objective measures of student learning that can be used to assess instructor quality, end-of-course student evaluations are the primary mechanism for assessing instructor quality at the University of Phoenix and most other institutions. At UPX, end-ofcourse evaluations are optional; fewer than 50% of students that have a MTH208 final exam score (our proxy for being engaged in the course at the end of the class) also have a completed evaluation. Students are asked how much they would recommend the instructor to another student, on a 1 to 10 scale. Scores equal to 8 or above are considered "good" by the University and we adopt this convention as well, constructing an indicator for whether the student rated the instructor at least an 8 on the 10 point scale. Table 7 presents estimates of model (4) with this evaluation score included pair-wise along with four different learning outcomes. We also include section-specific shocks that are permitted to correlate between learning and evaluation outcomes. The variance of these section shocks captures section-tosection variability that is not explained by instructors. We do not impute evaluation scores when missing, as our goal is to assess how well the course evaluation system - as it is currently used - captures our more objective measures of instructor effectiveness. ${ }^{23}$

As with learning outcomes, there is substantial variability across instructors: a one-standarddeviation increase in instructor quality is associated with a 0.219 percentage point increase in the fraction of student evaluations that are positive. This variability is smaller, though still large, among online instructors and is also comparable to the section-to-section variability (0.233). Interestingly, evaluation

[^13]scores are most positively correlated with grades in the current course, suggesting that instructors are rewarded (through higher evaluations) for high course grades or that students experiencing temporary positive grade shocks attribute this to their instructor. Correlations with subsequent course performance and test scores is much weaker (and even negative for MTH 209 test scores). Collectively this suggests that end-of-course evaluations by students are unlikely to capture much of the variation in instructor quality, especially for more distant or objective outcomes.

Table 8 presents estimates of instructor effects for several different outcomes, both for the full sample and the restricted sample for which test scores are available. There is substantial instructor variability in students' likelihood of taking MTH209 and in the number of credits earned in the six months following MTH208. Both of these are important indicators of students' longer-term success at UPX. A one-standard-deviation increase in MTH208 instructor quality is associated with a five percentage point increase in the likelihood a student enrolls in MTH209 (on a base of 76\%), with the variability twice as large for face-to-face MTH208 sections as it is for online ones. A similar increase in instructor quality is associated with a 0.13 SD increase in the number of credits earned in the six months following MTH208, again with face-to-face instructors demonstrating more than twice as much variability as online sections. Total credits earned after MTH208 is an important outcome for students and the university which is unlikely to be manipulated by individual instructors. In Appendix Table A3 we report correlations between predicted instructor effects measured with these different outcomes for the test score sample, overall and separately by format. ${ }^{24}$ Most of the outcomes are positively correlated overall and for face-to-face sections. Interestingly, value-added measured by likelihood of taking MTH209 after MTH208 is only weakly correlated with value-added measured by final exam scores. Thus instructors that excel in improving student test scores are unlikely to excel at getting their students to enroll in the follow-up course.

VI. Does Effectiveness Correlate with Experience and Pay?

Having demonstrated substantial variation in instructor effectiveness along several dimensions of student success, particularly for face-to-face sections, we now consider how teaching experience and pay correlates with effectiveness. Are more experienced instructors more effective? Are more effective instructors paid more highly? While we do not attempt an exhaustive analysis of these questions, the answers have implications for whether instructional resources are used productively and how overall

[^14]effectiveness could be improved. Teaching experience - both course-specific and general - may be an important factor in instructor performance given results found in other contexts (e.g., Ost, 2014; Cook \& Mansfield, 2015; Papay and Kraft, 2015).

For this analysis, we focus on instructors hired since 2002 so that we can construct a full history of courses taught across all courses and in MTH208 specifically, not censored by data availability. This results in 18,409 sections (5,970 in the test score sample). Our main approach is to regress section-level residuals $\tilde{Y}_{j k t}$ on observed instructor experience at the time the section was taught:

$$
\begin{equation*}
\tilde{Y}_{j k t}=f\left(\operatorname{Exp}_{M T H 208, t}\right)+\theta_{k}+e_{j k t} \tag{5}
\end{equation*}
$$

Where $f($.$) is a flexible function of experience teaching MTH208. Our preferred model includes instructor$ fixed effects, θ_{k}, isolating changes in effectiveness as individual instructors gain experience. This model controls for selection into experience levels based on fixed instructor characteristics, but does not control for time-varying factors related to experience and effectiveness. For instance, if instructors tend to accumulate teaching experience when other work commitments are slack, the experience effect may be confounded with any effects of these other work commitments. We also include other dimensions of experience, such as number of sections taught of MTH209 and other courses. Papay and Kraft (2015) discuss the challenges in estimating (5) in the traditional K12 setting, given the near collinearity between experience and calendar year for almost all teachers. Many of these issues are not present in our setting, since the timing of when courses are taught and experience is accumulated differs dramatically across instructors. The non-standard calendar of UPX thus facilitates the separation of experience from time effects.

Figures 1 and 2 present estimates of (5) for a non-parametric version of $f($.$) , regressing section$ mean residuals on a full set of MTH208 experience dummies (capped at 20) along with year, month, and (when noted) instructor fixed effects. ${ }^{25}$ Figure 1 depicts results for course grade outcomes. Effectiveness increases very modestly the first few times instructors teach MTH208, as measured by MTH208 and MTH209 course grades. Interestingly, including instructor fixed effects stabilizes the effectivenessexperience profile, suggesting that less effective instructors are more likely to select into having more MTH208 teaching experience. Figure 2 repeats this analysis but for final exam test scores on the restricted test score sample. Estimates are quite imprecise, but do suggest modest growth in MTH208 exam scores as instructors gain experience. Improvement with experience is not as clear-cut for MTH209 test score performance.

To gain precision, Table 9 presents estimates from parametric specifications for $f($.$) , while also$ including teaching experience in other courses and time since hire (in Panel C). We find that teaching

[^15]MTH208 at least one time previously is associated with a 0.03 to 0.04 SD increase in effectiveness (measured by MTH208 grade), but that additional experience improves this outcome very little. This holds even after controlling for additional experience in other subjects. Instructors' experience impact on follow-on course grades is more modest and gradual. Test score results are much less precise, but do suggest that instructor effectiveness increases with experience for final exams in contemporaneous courses and (very modestly) in follow-on courses. We find that general experience in other subjects has little association with effectiveness in MTH208 (not shown). Finally, we find no systematic relationship between teaching experience and instructors' impact on the number of credits their students earn subsequent to MTH208. Whether the instructor was hired in the past year and the number of years since first hire date has no association with most measures of instructor effectiveness (after controlling for MTH208 experience), but is associated with MTH208 test scores.

If pay was commensurate with effectiveness, then the substantial variation in measured effectiveness across instructors would not necessarily translate to productivity or efficiency differences (at least from the institution's perspective). Our discussions with leaders at University of Phoenix suggest that pay is not linked to classroom performance in any direct way, but was rather tied primarily to tenure and experience. We directly examine correlates of instructor salary quantitatively in Table 10. Consistent with this practice, effectiveness (as measured by section-level mean residuals in MTH209 grades) is uncorrelated with pay, both in the cross-section and within instructors over time. ${ }^{26}$ However, years since first hire is the one consistent predictor of the salary instructors are paid for MTH208 courses. Instructors receive approximately $\$ 44$ more per course for each year of tenure (approximately 4% higher pay) after fixed instructor differences are accounted for. Overall and course-specific teaching experience have no association with instructor salary.

VII. Conclusion and Discussion

In this study, we document substantial differences in effectiveness across instructors of required college algebra at the University of Phoenix. A one-standard-deviation in instructor quality is associated with a 0.20 SD increase in course grades and a 0.41 SD increase in final exam scores in the follow-on course, as well as a 0.13 SD increase in the number of credits earned within six months. Variation is much smaller for online sections, yet still measurable and larger than that found in other contexts. Putting these magnitudes in context, having an instructor that is 1 SD more effective produces a test score change that is larger than the gap between 25 and 35 year-olds and comparable to the performance gap between

[^16]students entering the class with a 3.0 vs . a 2.0 GPA . Instructors are clearly an quite important factor in student success.

It is worth considering what institutional factors may contribute to such large differences across instructors, particularly in contrast to other settings. Prior work in postsecondary has focused on selective and research-oriented public and non-profit universities, courses taught by permanent or tenure-track faculty, institutions operating in a single geographic location, and serving "traditional" students. It is possible that instructors are a more important factor in the success of "non-traditional" students or that there is more variation in instructor quality among contingent and adjunct faculty than among permanent or tenure-track faculty. The one prior study that finds instructor variation comparable to ours (Bettinger, Fox, Loeb, and Taylor, 2015) shares all of these traits with our study institution. Having a better understanding of the importance of faculty at less selective institutions and in settings where most faculty are contingent is important, as these institutions serve a very large (and growing) share of postsecondary students in the U.S.. Finally, it is possible that the fast course pace - five weeks - could magnify the consequences of behavioral differences across instructors. A delay in providing student feedback - even just a few days - could be devastating to students in a five-week course.

This substantial variation across instructors suggests potential to improve student and institutional performance via changes in how faculty are hired, developed, motivated, and retained. Institutions like UPX reflect the sector-wide trend towards contingent faculty (e.g. adjuncts and lecturers), which aimed to save costs and create flexibility (Ehrenberg, 2012). Debate about whether adjuncts are better or worse for instruction than permanent faculty obfuscates the feature that contingent arrangements create opportunities for improving student performance via personnel policies that are not available when faculty are permanent. However, instructor evaluation and compensation systems have not kept up with these changes; our study institution has an evaluation system (student course evaluations) that is similar to that at elite research universities and a salary schedule that varies only with tenure and credentials. Of course the potential for improvement through changes in personnel policies - and how these policies should be designed - depends critically on the supply of instructors available (e.g. Rothstein, 2015). Online and ground campuses likely face quite different labor markets for instructors, the former drawing on instructors across the country, suggesting that personnel policies should differ between them. Better understanding the labor market for postsecondary faculty - particularly at less selective institutions - is an important area for future attention.

Finally, we have focused on the role of individual faculty in promoting the success of students. In fact, differences in instructor effectiveness is one potential explanation for cross-institution differences in institutional performance and productivity that has yet to be explored. Our study suggests it should.

References

Bettinger, E., Fox, L., Loeb, S., \& Taylor, E. (2014). Changing distributions: How online college classes alter student and professor performance. Working Paper, Stanford University.

Bettinger, E. P., \& Long, B. T. (2005). Do faculty serve as role models? The impact of instructor gender on female students. The American Economic Review, 95(2), 152-157.

Bettinger, E. P., \& Long, B. T. (2010). Does cheaper mean better? The impact of using adjunct instructors on student outcomes. The Review of Economics and Statistics, 92(3), 598-613.

Braga, M., Paccagnella, M., \& Pellizzari, M. (2014). The academic and labor market returns of university professors. IZA Discussion Papers.

Carrell, S. E., \& West, J. E. (2010). Does Professor Quality Matter? Evidence from Random Assignment of Students to Professors. Journal of Political Economy, 118(3), 409-432.

Chetty, R., Friedman, J. N., \& Rockoff, J. E. (2014). Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates. The American Economic Review, 104(9), 2593-2632.

Cook, J. B., \& Mansfield, R. K. (2014). Task-Specific Experience and Task-Specific Talent: Decomposing the Productivity of High School Teachers. Working Paper

Ehrenberg, R.G. (2012). American Higher Education in Transition. Journal of Economic Perspectives, 26(1): 193-216.

Ehrenberg, R. G., \& Zhang, L. (2005). Do tenured and tenure-track faculty matter? Journal of Human Resources, 40(3), 647-659.

Fairlie, R. W., Hoffmann, F., \& Oreopoulos, P. (2014). A Community College Instructor Like Me: Race and Ethnicity Interactions in the Classroom. The American Economic Review, 104(8), 2567-2591.

Figlio, D. N., Schapiro, M. O., \& Soter, K. B. (2015). Are tenure track professors better teachers? Review of Economics and Statistics, 97(4), 715-724.

Brodaty, T. and M. Gurgand. (2016). "Good peers or good teachers? Evidence from a French University." Economics of Education Review, 54(2016): 62-78.

Hoffmann, F., \& Oreopoulos, P. (2009a). Professor qualities and student achievement. The Review of Economics and Statistics, 91(1), 83-92.

Hoffmann, F., \& Oreopoulos, P. (2009b). A professor like me the influence of instructor gender on college achievement. Journal of Human Resources, 44(2), 479-494.

Jackson, C. K., Rockoff, J. E., \& Staiger, D. O. (2014). Teacher Effects and Teacher-Related Policies. Annual Review of Economics, 6, 801-25.

Jacob, B. A., \& Lefgren, L. (2008). Can principals identify effective teachers? Evidence on subjective performance evaluation in education. Journal of labor Economics, 26(1), 101-136.

Kane, T. J., Rockoff, J. E., \& Staiger, D. O. (2008). What does certification tell us about teacher effectiveness? Evidence from New York City. Economics of Education review, 27(6), 615-631.

Morris, Jolene, 2016. "University of Phoenix, Online Campus Course Syllabus - Math 208 r3" retrieved at http://www.jolenemorris.com/mathematics/Math208/CM/Week0/math_208_syllabus.htm on October 26, 2016.

Ost, B. (2014). How Do Teachers Improve? The Relative Importance of Specific and General Human Capital. American Economic Journal: Applied Economics, 6(2), 127-51.

Papay, John P. and Matthew A. Kraft, (2015). "Productivity returns to experience in the teacher labor market: Methodological challenges and new evidence on long-term career improvement." Journal of Public Economics, 130: 105-119.

Rivkin, S. G., Hanushek, E. A., \& Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417-458.

Rothstein, J. (2009). ""Student Sorting and Bias in Value Added Estimation: Selection on Observables and Unobservables." Education Finance and Policy 4(4), Fall 2009: 537-571

Rothstein, J. (2010). ""‘Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement." Quarterly Journal of Economics 125(1), February 2010: 175-214.

Rothstein, J. (2015). "Teacher Quality Policy When Supply Matters." American Economic Review 105(1), January 2015: 100-130.

Rockoff, J. E. (2004). The impact of individual teachers on student achievement: Evidence from panel data. The American Economic Review, 94(2), 247-252.

Figure 1. Relationship between Instructor Effectiveness (Grades) and Teaching Experience

Effect of MTH208 Experience on MTH 208 Performance

$$
\begin{aligned}
& \text { No instructor FE } \\
& \text { All Sections }
\end{aligned}
$$

Effect of MTH208 Experience on MTH 208 Performance
With instructor FEs
All Sections

Effect of MTH208 Experience on MTH 209 Performance No instructor FEs All Sections

Effect of MTH208 Experience on MTH 209 Performance With instructor FEs

Notes: Dashed lines denote $95 \% \mathrm{Cl}$ with standard errors clustered by instructor. Section mean residuals are regressed on MTH208 teaching experience (capped at 20), instructor fixed effects (bottom row), and year and month fixed effects. Sample restricted to 18,418 sections taught by instructors hired since 2002. First stage model includes full controls (see text).

Figure 2. Relationship between Instructor Effectiveness (Test Scores)and Teaching Experience

Notes: Dashed lines denote $95 \% \mathrm{Cl}$ with standard errors clustered by instructor. Section mean residuals are regressed on MTH208 teaching experience (capped at 20), instructor fixed effects (bottom row), and year and month fixed effects. Sample restricted to 5860 sections taught by instructors hired since 2002. First stage model includes full controls (see text).

Table 1a. Descriptive Statistics for Sections and Instructors (Full Sample)

	All sections $(n=26,384)$		Face-to-Face sections $(n=13,791)$		Online sections $(n=12,593)$	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Online section	0.477	0.499	0.000	0.000	1.000	0.000
Male	0.735	0.441	0.755	0.430	0.714	0.452
White	0.649	0.477	0.633	0.482	0.664	0.472
Instructor Compensation per Section ($\$$)	955.14	181.61	949.39	211.45	961.45	141.86
Section-average student age	34.89	3.25	34.33	3.38	35.50	3.00
Section-average share male	0.36	0.17	0.37	0.17	0.35	0.17
Section-average incoming GPA	3.35	0.23	3.34	0.24	3.36	0.21
Section-average incoming credits	22.87	8.39	25.56	8.82	19.93	6.77
Section-average repeat 208	0.11	0.11	0.08	0.10	0.14	0.11
Section-average number times taken 208	1.11	0.13	1.09	0.11	1.14	0.14
Section-average time since program start (years)	1.15	0.50	1.20	0.52	1.09	0.47
Section enrollment	12.88	4.40	13.98	5.38	11.68	2.48
Years since first hire	4.783	4.281	5.005	4.811	4.539	3.597
Years since first hire >1	0.830	0.376	0.804	0.397	0.858	0.349
Total math 208 sections taught prior to this section	15.310	16.792	11.038	13.132	19.988	18.975
Ever taught MTH208 prior to this section	0.920	0.272	0.888	0.316	0.955	0.208
Total sections instructor taught prior to this section	43.213	51.854	46.501	61.163	39.611	38.886
Total MTH209 sections taught prior to this section	9.871	12.915	10.690	13.170	8.975	12.569
Ever taught MTH209 prior to this section	0.776	0.417	0.873	0.333	0.670	0.470

Table 1b. Descriptive Statistics for Students (Full Sample)

	$\begin{aligned} & \hline \hline \text { All sections } \\ & (n=339,844) \end{aligned}$		Face-to-Face sections$(\mathrm{n}=192,747)$		Online sections$(n=147,097)$	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Male	0.359	0.480	0.373	0.484	0.341	0.474
Age	34.816	9.097	34.264	9.127	35.538	9.008
Baseline GPA (0-4)	3.348	0.538	3.348	0.518	3.347	0.563
Credits earned prior to start of Math 208	23.386	18.363	25.714	18.451	20.337	17.791
Took Math 208 before	0.104	0.306	0.077	0.267	0.140	0.347
Number of times MTH 208 taken	1.109	0.385	1.084	0.325	1.142	0.448
BS (general studies)	0.211	0.408	0.208	0.406	0.214	0.410
BS in Nursing	0.050	0.217	0.026	0.159	0.081	0.272
BS in Accounting	0.003	0.057	0.002	0.045	0.005	0.069
BS in Business	0.503	0.500	0.587	0.492	0.393	0.488
BS in Criminal Justice Administration	0.035	0.183	0.047	0.213	0.018	0.133
BS in Education	0.022	0.145	0.013	0.112	0.033	0.179
BS in Health Administration	0.034	0.182	0.034	0.181	0.034	0.182
BS in Human Services	0.033	0.179	0.023	0.150	0.046	0.210
BS in Information Technology	0.028	0.166	0.027	0.162	0.030	0.172
BS in Management	0.041	0.199	0.022	0.148	0.066	0.248
Non-degree program	0.014	0.117	0.002	0.042	0.030	0.169
BS in other Program	0.015	0.122	0.009	0.092	0.024	0.152
Time since program start date (years)	1.160	1.399	1.203	1.334	1.105	1.478
Grade in Math 208	2.457	1.395	2.534	1.333	2.355	1.467
A / A-	0.319	0.466	0.323	0.468	0.314	0.464
$B+/ B / B-$	0.268	0.443	0.275	0.446	0.258	0.438
$\mathrm{C}+\mathrm{C} / \mathrm{C}-$	0.174	0.379	0.192	0.394	0.151	0.358
D $/$ / / D-	0.073	0.260	0.077	0.267	0.066	0.249
F	0.045	0.207	0.038	0.191	0.054	0.226
Withdrawn	0.122	0.327	0.095	0.293	0.156	0.363
Passed Math 208	0.834	0.372	0.867	0.340	0.790	0.407
Math 208 Final exam score available	0.243	0.429	0.282	0.450	0.191	0.393
Math 208 final exam \% correct (if available)	0.708	0.241	0.697	0.246	0.729	0.230
Took Math 209	0.755	0.430	0.824	0.380	0.664	0.472
Grade in Math 209 (if took it)	2.620	1.246	2.714	1.160	2.464	1.363
A / A-	0.318	0.466	0.328	0.470	0.300	0.458
$B+/ B / B-$	0.294	0.456	0.304	0.460	0.279	0.449
$\mathrm{C}+/ \mathrm{C} / \mathrm{C}-$	0.201	0.401	0.217	0.412	0.174	0.379
D + / / D-	0.074	0.261	0.074	0.262	0.073	0.260
F	0.032	0.176	0.021	0.145	0.049	0.215
Withdrawn	0.068	0.251	0.046	0.209	0.104	0.305
Math 209 Final exam score available	0.200	0.400	0.249	0.433	0.136	0.342
Math 209 final exam \% correct (if available)	0.691	0.246	0.690	0.245	0.693	0.250
Credits earned in following 6 months	10.461	5.315	11.401	5.053	9.230	5.397
Have course evaluation	0.117	0.321	0.118	0.323	0.115	0.320
Course evaluation: Recommend instructor (if available)	0.658	0.474	0.693	0.461	0.610	0.488

Table 2. Randomization Check

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Panel A. Outcome = Average Age $($ mean $=34.89)$			$\begin{aligned} & \text { Panel B. Outcome }=\text { Fraction Male } \\ & \qquad(\text { mean }=0.36) \end{aligned}$			$\begin{aligned} & \text { Panel C. Outcome }=\text { Fraction Repeating } \\ & \qquad(\text { mean }=0.11) \end{aligned}$		
Years since first hire	$\begin{aligned} & -0.0147 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.00863 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.00207 \\ (0.009) \end{gathered}$	$\begin{aligned} & 0.0012 \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.00122^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000613 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000429 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000159 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000305 \\ (0.000) \end{gathered}$
Years since first hire > 1	$\begin{gathered} 0.253^{* * *} \\ (0.080) \end{gathered}$	$\begin{aligned} & 0.0808 \\ & (0.073) \end{aligned}$	$\begin{gathered} 0.091 \\ (0.074) \end{gathered}$	$\begin{gathered} -0.00205 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.00750^{*} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.00713^{*} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.0108^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.00337 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.00137 \\ (0.002) \end{gathered}$
Total MTH 208 sections taught prior to this section	$\begin{gathered} 0.0166^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.00430^{* *} \\ (0.002) \end{gathered}$	$\begin{aligned} & -0.00161 \\ & (0.002) \end{aligned}$	$\begin{gathered} -0.000769^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000395^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -5.06 \mathrm{E}-05 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000793^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.0000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.0001 \\ & (0.000) \end{aligned}$
Ever taught MTH208 prior to this section	$\begin{aligned} & 0.155^{*} \\ & (0.084) \end{aligned}$	$\begin{array}{r} -0.0759 \\ (0.080) \end{array}$	$\begin{aligned} & -0.0333 \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.00276 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.00587 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.00269 \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.0254^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.00483^{*} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.00752^{* * *} \\ (0.003) \end{gathered}$
Total sections instructor taught prior to this section	$\begin{gathered} -0.00139 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000813 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000186 \\ (0.001) \end{gathered}$	$\begin{gathered} 9.60 \mathrm{e}-05^{*} \\ (0.000) \end{gathered}$	$\begin{gathered} 7.69 \mathrm{e}-05^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} 3.34 \mathrm{E}-05 \\ (0.000) \end{gathered}$	$\begin{gathered} -7.39 \mathrm{e}-05^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.00002 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.00002 \\ (0.000) \end{gathered}$
Total MTH209 sections taught prior to this section	$\begin{gathered} -0.00546 \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.0012 \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.000613 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.000152 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000189 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.000209 * \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.0001 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.0000 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.000109 \\ (0.000) \end{gathered}$
Ever taught MTH209 prior to this section	$\begin{gathered} -0.361^{* * *} \\ (0.073) \end{gathered}$	$\begin{aligned} & 0.0281 \\ & (0.064) \end{aligned}$	$\begin{aligned} & 0.0141 \\ & (0.061) \end{aligned}$	$\begin{gathered} -0.00352 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.0121^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.0135^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.0206^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.00304 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.000631 \\ (0.002) \end{gathered}$
R-squared	0.047	0.121	0.176	0.034	0.105	0.167	0.054	0.13	0.167
	Panel D. Outcome =Incoming GPA $($ mean $=3.35)$			Panel E. Outcome =Incoming credits $($ mean $=22.87)$			Panel F. Outcome $=$ Section Enrollment (mean $=12.88$)		
Years since first hire	$\begin{gathered} 0.00167^{* *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000143 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000227 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.0871^{*} * \\ (0.042) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.026) \end{gathered}$	$\begin{gathered} -0.00684 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.0651^{* *} \\ (0.025) \end{gathered}$	$\begin{aligned} & 0.0215 \\ & (0.015) \end{aligned}$	$\begin{gathered} 0.00634 \\ (0.012) \end{gathered}$
Years since first hire > 1	$\begin{gathered} -0.0168^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.0124^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.00124 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.174 \\ (0.234) \end{gathered}$	$\begin{gathered} 0.593^{* * *} \\ (0.192) \end{gathered}$	$\begin{gathered} 0.192 \\ (0.143) \end{gathered}$	$\begin{gathered} -0.278^{* *} \\ (0.135) \end{gathered}$	$\begin{aligned} & 0.0592 \\ & (0.105) \end{aligned}$	$\begin{aligned} & 0.0321 \\ & (0.087) \end{aligned}$
Total MTH 208 sections taught prior to this section	$\begin{aligned} & 0.0000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.0001 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.0000 \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.0455^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.0235^{* * *} \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.00052 \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.0119^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.0186^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} 0.00512^{* * *} \\ (0.002) \end{gathered}$
Ever taught MTH208 prior to this section	$\begin{gathered} 0.00183 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.000257 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.00197 \\ (0.005) \end{gathered}$	$\begin{gathered} -1.551^{* * *} \\ (0.200) \end{gathered}$	$\begin{gathered} 0.174 \\ (0.193) \end{gathered}$	$\begin{aligned} & 0.326^{* *} \\ & (0.165) \end{aligned}$	$\begin{gathered} -0.535^{* * *} \\ (0.119) \end{gathered}$	$\begin{gathered} 0.00424 \\ (0.112) \end{gathered}$	$\begin{gathered} 0.269^{* *} * \\ (0.096) \end{gathered}$
Total sections instructor taught prior to this section	$\begin{aligned} & 0.00004 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.00003 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.00001 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.00625^{*} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.00370^{*} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.000968 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.00562^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} -0.00113 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.000246 \\ (0.001) \end{gathered}$
Total MTH209 sections taught prior to this section	$\begin{aligned} & 0.00024 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.00009 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.00002 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.0132 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.0025 \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.00531 \\ & (0.004) \end{aligned}$	$\begin{gathered} 0.0234^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.0158^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.0114^{* * *} \\ (0.003) \end{gathered}$
Ever taught MTH209 prior to this section	$\begin{gathered} 0.000383 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.00203 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.00303 \\ (0.004) \end{gathered}$	$\begin{gathered} 1.890^{* * *} \\ (0.191) \end{gathered}$	$\begin{aligned} & -0.0926 \\ & (0.165) \end{aligned}$	$\begin{aligned} & -0.0449 \\ & (0.112) \end{aligned}$	$\begin{gathered} 0.709^{* * *} \\ (0.117) \end{gathered}$	$\begin{aligned} & -0.143 \\ & (0.104) \end{aligned}$	$\begin{aligned} & -0.0672 \\ & (0.063) \end{aligned}$
R-squared	0.338	0.397	0.44	0.13	0.283	0.429	0.07	0.236	0.359
Observations FE	23298 None	23298 campus	23298 campus-year	23298 None	23298 campus	23298 campus-year	23298 None	23298 campus	23298 campus-year

Notes: Each panel-column is a separate regression of section-level student average characteristics (or total section enrollment) on instructor characteristics. All specifications also include year and month fixed effects. Robust standard errors clustered by instructor in parenthesis.

Table 3. Main Course Grade and Test Score Outcomes
All models include full controls in first stage, impute zero MTH209 grade if missing, impute 10th ptile of test scores if missing

	FTF and Online Combined			FTF only			Online only		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Panel A. Outcome = Standardized Course Grade									
	Full sample (no section shocks)	Full sample (section shocks)	Test sample (section shocks)	Full sample (no section shocks)	Full sample (section shocks)	Test sample (section shocks)	Full sample (no section shocks)	Full sample (section shocks)	Test sample (section shocks)
Instructor Effect									
SD(MTH208 effect)	0.305	0.300	0.286	0.316	0.315	0.298	0.246	0.245	0.225
	(.006)	(.006)	(.008)	(.007)	(.007)	(.009)	(.008)	(.008)	(.012)
SD(MTH209 effect)	0.201	0.195	0.205	0.250	0.243	0.239	0.041	0.039	0.028
	(.005)	(.005)	(.007)	(.006)	(.006)	(.008)	(.005)	(.005)	(.013)
Corr (MTH208, MTH209)	0.695	0.596	0.550	0.763	0.657	0.597	0.374	0.168	0.365
	(.017)	(.02)	(.03)	(.017)	(.02)	(.032)	(.087)	(.095)	(.234)
Section Effect									
SD(MTH208 effect)		0.287	0.269		0.280	0.277		0.296	0.254
		(1.102)	(.208)		(.206)	(.004)		(.15)	(.336)
SD(MTH209 effect)		0.299	0.277		0.300	0.290		0.298	0.253
		(1.058)	(.202)		(.192)	(.004)		(.149)	(.338)
Corr (MTH208, MTH209)		0.425	0.454		0.478	0.513		0.364	0.323
		(3.132)	(.681)		(.659)	(.015)		(.367)	(.859)
Observations (sections)	26,384	26,384	7,232	13,791	13,791	4,707	12,593	12,593	2,560
Number of Instructors	2,243	2,243	1,198	1,710	1,710	938	676	676	292
Panel B. Outcome $=$ Standardized Test Score									
	Test sample		Test sample	Test sample		Test sample	Test sample		Test sample
	(no section		(section	(no section		(section	(no section		(section
	shocks)		shocks)	shocks)		shocks)	shocks)		shocks)
Instructor Effect									
SD(MTH208 effect)	0.436		0.444	0.482		0.486	0.110		0.135
	(.012)		(.012)	(.014)		(.014)	(.014)		(.012)
SD(MTH209 effect)	0.425		0.408	0.490		0.481	0.100		0.047
	(.012)		(.012)	(.015)		(.015)	(.017)		(.032)
Corr (MTH208, MTH209)	0.680		0.609	0.680		0.597	0.248		-0.066
	(.025)		(.027)	(.026)		(.029)	(.204)		(.358)
Section Effect									
SD(MTH208 effect)			0.380			0.384			0.384
			(.605)			(.828)			(.007)
SD(MTH209 effect)			0.478			0.439			0.547
			(.481)			(.724)			(.009)
Corr (MTH208, MTH209)			0.294			0.391			0.158
			(.763)			(1.489)			(.023)
Observations (sections)	7,232		7,232	4,707		4,707	2,560		2,560
Number of Instructors	1,198		1,198	938		938	292		292

Notes: Random effects models are estimated on section-level residuals. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10 th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses.

Table 4. Robustness to Having Same Instructor for MTH208 and MTH209, FTF Sections
All models include full controls in first stage, correlated section effects, impute zero MTH209 grade if missing, impute 10th ptile of test score if missing MTH209 test score

	All FTF sections		Not teaching next 3 months		Not teaching 208 next 3 months		FTF Sections with < 25% same instructor		FTF sections with 0\% same instructor	
	Full sample	Test score sample								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Panel A. Outcome = Standardized Course Grade										
Instructor Effect										
SD(MTH208 effect)	0.315	0.298	0.333	0.285	0.318	0.294	0.326	0.312	0.313	0.302
	(.007)	(.009)	(.021)	(.036)	(.007)	(.01)	(.015)	(.023)	(.016)	(.026)
SD(MTH209 effect)	0.243	0.239	0.219	0.152	0.239	0.237	0.159	0.206	0.161	0.177
	(.006)	(.008)	(.039)	(.083)	(.007)	(.01)	(.022)	(.037)	(.024)	(.048)
Corr (MTH208, MTH209)	0.657	0.597	0.333	-0.116	0.669	0.580	0.205	0.018	0.140	-0.067
	(.02)	(.032)	(.137)	(.441)	(.023)	(.038)	(.107)	(.166)	(.118)	(.243)
Panel B. Outcome $=$ Standardized Test Score										
Instructor Effect										
SD(MTH208 effect)		0.486		0.466		0.474		0.464		0.436
		(.014)		(.069)		(.015)		(.035)		(.039)
SD(MTH209 effect)		0.481		0.296		0.467		0.526		0.486
		(.015)		(.093)		(.016)		(.036)		(.042)
Corr (MTH208, MTH209)		0.597		1.000		0.597		0.523		0.546
		(.029)		(a)		(.033)		(.085)		(.11)
Observations (sections)	13,791	4,707	856	314	7,224	2,645	1,587	573	1,402	513
Number of Instructors	1,710	938	618	255	1,695	933	805	371	763	351

Notes: Random effects models are estimated on section-level residuals. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses. (a) indicates that convergence not achieved.

Table 5. Robustness of Test Score Results to First-stage Model (with Section Shocks)
All models include section-specific shocks and impute zero MTH209 grade if missing, impute 10th ptile of test score if missing

	No instructor FE in first stage						Instructor FE included in first stage					
	(1)	(2)	(3)	(4)	(5)	(6)	(1)	(2)	Base model			(6)
									(3)	(4)	(5)	
Panel A. All Sections (just test score sample), $\mathrm{n}=7232$ sections, 1198 instructors												
SD(MTH208 test effect)	0.293	0.263	0.285	0.266	0.266	0.248	0.294	0.442	0.287	0.444	0.440	0.425
	(.01)	(.009)	(.009)	(.009)	(.009)	(.009)	(.01)	(.012)	(.009)	(.012)	(.012)	(.011)
SD(MTH209 test effect)	0.286	0.210	0.264	0.216	0.217	0.194	0.289	0.432	0.291	0.408	0.413	0.468
	(.01)	(.01)	(.01)	(.01)	(.01)	(.009)	(.01)	(.013)	(.01)	(.012)	(.012)	(.013)
Corr (MTH208, MTH209)	0.725	0.854	0.799	0.865	0.864	0.862	0.722	0.616	0.754	0.609	0.619	0.617
	(.028)	(.027)	(.025)	(.025)	(.025)	(.028)	(.028)	(.026)	(.026)	(.027)	(.027)	(.026)
Panel B. FTF Sections (just test score sample) - 4673 sections, 935 instructors												
SD(MTH208 test effect)	0.341	0.304	0.328	0.305	0.305	0.283	0.342	0.480	0.331	0.486	0.482	0.466
	(.012)	(.011)	(.011)	(.011)	(.011)	(.011)	(.012)	(.014)	(.011)	(.014)	(.014)	(.014)
SD(MTH209 test effect)	0.293	0.259	0.293	0.263	0.264	0.236	0.294	0.507	0.296	0.481	0.487	0.546
	(.012)	(.011)	(.012)	(.011)	(.011)	(.011)	(.012)	(.015)	(.012)	(.015)	(.015)	(.016)
Corr (MTH208, MTH209)	0.857	0.896	0.866	0.906	0.906	0.919	0.855	0.601	0.867	0.597	0.606	0.590
	(.023)	(.023)	(.022)	(.022)	(.022)	(.023)	(.023)	(.029)	(.022)	(.029)	(.028)	(.028)
Panel C. Online Sections (just test score sample) - 2559 sections, 292 instructors												
SD(MTH208 test effect)	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135
	(.013)	(.013)	(.012)	(.012)	(.012)	(.012)	(.013)	(.013)	(.012)	(.012)	(.012)	(.012)
SD(MTH209 test effect)	0.036	0.039	0.044	0.044	0.041	0.041	0.042	0.042	0.047	0.047	0.045	0.046
	(.042)	(.039)	(.034)	(.034)	(.036)	(.036)	(.037)	(.036)	(.032)	(.032)	(.033)	(.033)
Corr (MTH208, MTH209)	-0.200	-0.172	-0.008	-0.082	-0.148	-0.142	-0.156	-0.157	-0.062	-0.066	-0.122	-0.121
	(.557)	(.489)	(.378)	(.387)	(.431)	(.43)	(.449)	(.445)	(.36)	(.358)	(.381)	(.378)
Controls in First Stage Model												
indiv controls	no	no	yes	yes	yes	yes	no	no	yes	yes	yes	yes
zip controls	no	no	yes	yes	yes	yes	no	no	yes	yes	yes	yes
section avg controls	no	no	yes	yes	yes	yes	no	no	yes	yes	yes	yes
flexible controls	no	no	no	no	yes	yes	no	no	no	no	yes	yes
year FE , month FE	yes											
campus FE	no	yes	no	yes	yes	no	no	yes	no	yes	yes	no
location FE	no	no	no	no	no	yes	no	no	no	no	no	yes

Notes: Random effects models are estimated on section-level residuals. Indiv controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Flexible controls include program-specific cubics in incoming GPA and credits, cubic interactions between GPA and credits, gender-specific age cubic, and interactions between gender and GPA and credits. Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses. ${ }^{* *}$ Indicates that model failed to converge.

Table 6. Robustness to Imputation Method
All models include full controls in first stage and include section-specific shocks

Notes: Random effects models are estimated on section-level residuals. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Robust standard errors clustered by instructor in parentheses.
(a) indicates that convergence not achieved.

Table 7. Relationship between Course Grade or Test Effect and Teaching Evaluation
All models include full controls in first stage, impute zero MTH209 grade if missing, impute 10th ptile of test score if missing

	FTF and Online Combined				FTF only				Online only			
	Measure of student learning:				Measure of student learning:				Measure of student learning:			
	MTH2O8 grade	MTH209 grade	$\begin{gathered} \text { MTH208 } \\ \text { test } \\ \hline \end{gathered}$	$\begin{gathered} \text { MTH209 } \\ \text { test } \\ \hline \end{gathered}$	MTH208 grade	MTH209 grade	$\begin{gathered} \text { MTH208 } \\ \text { test } \end{gathered}$	$\begin{gathered} \text { MTH209 } \\ \text { test } \\ \hline \end{gathered}$	MTH2O8 grade	MTH2O9 grade	$\begin{gathered} \text { MTH208 } \\ \text { test } \\ \hline \end{gathered}$	MTH209 test
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Instructor Effect												
SD(learning effect)	$\begin{aligned} & 0.286 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.205 \\ & (.007) \end{aligned}$	$\begin{aligned} & 0.444 \\ & (.012) \end{aligned}$	$\begin{aligned} & 0.410 \\ & (.012) \end{aligned}$	$\begin{aligned} & 0.299 \\ & (.009) \end{aligned}$	$\begin{aligned} & 0.240 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.487 \\ & (.014) \end{aligned}$	$\begin{aligned} & 0.484 \\ & (.015) \end{aligned}$	$\begin{aligned} & 0.227 \\ & (.012) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (.013) \end{aligned}$	$\begin{aligned} & 0.137 \\ & (.012) \end{aligned}$	$\begin{aligned} & 0.048 \\ & (.032) \end{aligned}$
SD(eval effect)	$\begin{aligned} & 0.219 \\ & (.006) \end{aligned}$	$\begin{aligned} & 0.240 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.239 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.240 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.240 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.140 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.141 \\ & (.009) \end{aligned}$	$\begin{aligned} & 0.141 \\ & (.008) \end{aligned}$	$\begin{aligned} & 0.141 \\ & (.009) \end{aligned}$			
Corr (learning, eval)	$\begin{aligned} & 0.439 \\ & (.033) \end{aligned}$	$\begin{aligned} & 0.237 \\ & (.042) \end{aligned}$	$\begin{aligned} & 0.084 \\ & (.039) \end{aligned}$	$\begin{gathered} -0.084 \\ (.041) \end{gathered}$	$\begin{aligned} & 0.390 \\ & (.039) \end{aligned}$	$\begin{aligned} & 0.223 \\ & (.047) \end{aligned}$	$\begin{aligned} & 0.059 \\ & (.044) \end{aligned}$	$\begin{gathered} -0.074 \\ (.045) \end{gathered}$	$\begin{aligned} & 0.751 \\ & (.041) \end{aligned}$	$\begin{aligned} & 0.597 \\ & (.293) \end{aligned}$	$\begin{aligned} & 0.520 \\ & (.084) \end{aligned}$	$\begin{aligned} & -0.605 \\ & (.435) \end{aligned}$
Section Effect												
SD(learning effect)	$\begin{aligned} & 0.271 \\ & (.003) \end{aligned}$	$\begin{aligned} & 0.279 \\ & (.148) \end{aligned}$	$\begin{aligned} & 0.399 \\ & (.352) \end{aligned}$	$\begin{aligned} & 0.490 \\ & (.396) \end{aligned}$	$\begin{aligned} & 0.278 \\ & (.624) \end{aligned}$	$\begin{aligned} & 0.291 \\ & (.004) \end{aligned}$	$\begin{aligned} & 0.400 \\ & (.266) \end{aligned}$	$\begin{aligned} & 0.450 \\ & (.224) \end{aligned}$	$\begin{aligned} & 0.257 \\ & (.255) \end{aligned}$	$\begin{aligned} & 0.262 \\ & (.004) \end{aligned}$	$\begin{aligned} & 0.399 \\ & (.006) \end{aligned}$	$\begin{aligned} & 0.555 \\ & (.275) \end{aligned}$
SD(eval effect)	$\begin{aligned} & 0.233 \\ & (.003) \end{aligned}$	$\begin{aligned} & 0.233 \\ & (.178) \end{aligned}$	$\begin{aligned} & 0.219 \\ & (.641) \end{aligned}$	$\begin{aligned} & 0.213 \\ & (.913) \end{aligned}$	$\begin{aligned} & 0.246 \\ & (.706) \end{aligned}$	$\begin{aligned} & 0.246 \\ & (.003) \end{aligned}$	$\begin{aligned} & 0.232 \\ & (.457) \end{aligned}$	$\begin{aligned} & 0.228 \\ & (.442) \end{aligned}$	$\begin{aligned} & 0.210 \\ & (.313) \end{aligned}$	$\begin{aligned} & 0.217 \\ & (.004) \end{aligned}$	$\begin{aligned} & 0.200 \\ & (.004) \end{aligned}$	$\begin{aligned} & 0.191 \\ & (.797) \end{aligned}$
Corr (learning, eval)	$\begin{aligned} & 0.174 \\ & (.015) \end{aligned}$	$\begin{aligned} & 0.040 \\ & (.054) \end{aligned}$	$\begin{aligned} & 0.119 \\ & (.452) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (.017) \end{aligned}$	$\begin{aligned} & 0.156 \\ & (.799) \end{aligned}$	$\begin{aligned} & 0.041 \\ & (.019) \end{aligned}$	$\begin{aligned} & 0.102 \\ & (.27) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (.021) \end{aligned}$	$\begin{aligned} & 0.214 \\ & (.534) \end{aligned}$	$\begin{aligned} & 0.041 \\ & (.023) \end{aligned}$	$\begin{aligned} & 0.153 \\ & (.024) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (.026) \end{aligned}$
Observations (sections)	7,267	7,267	7,267	7,267	4,707	4,707	4,707	4,707	2,560	2,560	2,560	2,560
Number of Instructors	1,201	1,201	1,201	1,201	938	938	938	938	292	292	292	292

Notes: Random effects models are estimated on section-level residuals. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses.

Table 8. Instructor Effects for Alternative Outcomes
First stage model with full controls

	Outcome		
			Credits earned
	Pass MTH208	Take MTH209	6 mo
Panel A. Full Sample			
SD (instructor effect) - overall	0.073	0.051	0.126
($\mathrm{n}=26,384$)	$(.002)$	$(.002)$	$(.004)$
SD instructor effect - FTF	0.080	0.062	0.154
($\mathrm{n}=13,791$)	$(.002)$	$(.002)$	$(.005)$
SD instructor effect - online	0.059	0.031	0.059
($\mathrm{n}=12,593$)	$(.002)$	$(.002)$	$(.004)$
Panel B. Test Score Sample			
SD (instructor effect) - overall	0.072	0.059	0.130
($\mathrm{n}=7,267$)	$(.002)$	$(.003)$	$(.006)$
SD instructor effect - FTF	0.077	0.069	0.150
($\mathrm{n}=4,707$)	$(.003)$	$(.003)$	$(.007)$
SD instructor effect - online	0.056	0.032	0.040
($\mathrm{n}=2,560)$	$(.004)$	$(.004)$	$(.011)$

Notes: Random effects models are estimated on section-level residuals. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Robust standard errors clustered by instructor in parentheses.

Table 9. Correlates of Instructor Effectiveness
First stage model with full controls
All sections, faculty hired since 2002

	Outcome: Section-level mean residual for				
	MTH2O8 grade (1)	MTH2O9 grade (2)	MTH208 test (3)	MTH209 test (4)	Credits earned 6 months (5)
A. Linear, Only MTH208 Experience, Instructor FEs					
Taught MTH208 previously	$\begin{gathered} 0.0384 * * * \\ (0.0108) \end{gathered}$	$\begin{aligned} & 0.00635 \\ & (0.0107) \end{aligned}$	$\begin{gathered} 0.0690^{* *} \\ (0.0340) \end{gathered}$	$\begin{gathered} 0.0192 \\ (0.0382) \end{gathered}$	$\begin{aligned} & -0.0162 \\ & (0.0104) \end{aligned}$
Times taught MTH208	$\begin{aligned} & 0.00004 \\ & (0.0008) \end{aligned}$	$\begin{aligned} & 0.000127 \\ & (0.0006) \end{aligned}$	$\begin{aligned} & -0.00333 \\ & (0.0045) \end{aligned}$	$\begin{aligned} & -0.0034 \\ & (0.0044) \end{aligned}$	$\begin{aligned} & 0.00054 \\ & (0.0006) \end{aligned}$
B. Piecewise, Only MTH208 Experience, Instructor FEs					
Times taught MTH208=1	$\begin{gathered} 0.0313 * * * \\ (0.0121) \end{gathered}$	$\begin{aligned} & -0.00153 \\ & (0.0123) \end{aligned}$	$\begin{aligned} & 0.0669 * \\ & (0.0363) \end{aligned}$	$\begin{gathered} 0.0198 \\ (0.0424) \end{gathered}$	$\begin{aligned} & 0.00050 \\ & (0.0121) \end{aligned}$
Times taught MTH208= 2 to 5	$\begin{gathered} 0.0409^{* * *} \\ (0.0121) \end{gathered}$	$\begin{aligned} & 0.00804 \\ & (0.0121) \end{aligned}$	$\begin{aligned} & 0.0777^{*} \\ & (0.0398) \end{aligned}$	$\begin{gathered} 0.045 \\ (0.0440) \end{gathered}$	$\begin{aligned} & -0.0195^{*} \\ & (0.0114) \end{aligned}$
Times taught MTH208 $=6$ to 10	$\begin{gathered} 0.0403^{* * *} \\ (0.0156) \end{gathered}$	$\begin{aligned} & 0.00798 \\ & (0.0145) \end{aligned}$	$\begin{aligned} & 0.137^{* *} \\ & (0.0541) \end{aligned}$	$\begin{gathered} -0.000604 \\ (0.0563) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.0140) \end{gathered}$
Times taught MTH208 = 11 to 15	$\begin{gathered} 0.0412^{* *} \\ (0.0200) \end{gathered}$	$\begin{aligned} & 0.00129 \\ & (0.0176) \end{aligned}$	$\begin{aligned} & 0.169 * * \\ & (0.0656) \end{aligned}$	$\begin{gathered} 0.0432 \\ (0.0682) \end{gathered}$	$\begin{aligned} & -0.00106 \\ & (0.0170) \end{aligned}$
Times taught MTH208 = 16 to 20	$\begin{aligned} & 0.0397^{*} \\ & (0.0235) \end{aligned}$	$\begin{gathered} -0.0087 \\ (0.0195) \end{gathered}$	$\begin{aligned} & 0.159 * * \\ & (0.0792) \end{aligned}$	$\begin{gathered} 0.0765 \\ (0.0810) \end{gathered}$	$\begin{gathered} 0.0171 \\ (0.0191) \end{gathered}$
Times taught MTH208>20	$\begin{gathered} 0.0348 \\ (0.0278) \end{gathered}$	$\begin{aligned} & -0.00467 \\ & (0.0231) \end{aligned}$	$\begin{gathered} 0.131 \\ (0.0893) \end{gathered}$	$\begin{gathered} 0.113 \\ (0.0964) \end{gathered}$	$\begin{aligned} & 0.0428^{*} \\ & (0.0225) \end{aligned}$
C. Linear, Control for MTH209 experience, other math, non-math experience linearly, time since hire, Instructor FEs					
Taught MTH208 previously	$\begin{gathered} 0.0277^{* *} \\ (0.0135) \end{gathered}$	$\begin{aligned} & -0.00529 \\ & (0.0127) \end{aligned}$	$\begin{gathered} 0.0588 \\ (0.0484) \end{gathered}$	$\begin{gathered} -0.0449 \\ (0.0547) \end{gathered}$	$\begin{gathered} -0.0248 * * \\ (0.0118) \end{gathered}$
Times taught MTH208	$\begin{aligned} & 0.000248 \\ & (0.0009) \end{aligned}$	$\begin{aligned} & 0.00004 \\ & (0.0006) \end{aligned}$	$\begin{aligned} & -0.00819 \\ & (0.0051) \end{aligned}$	$\begin{aligned} & -0.00256 \\ & (0.0048) \end{aligned}$	$\begin{aligned} & 0.00084 \\ & (0.0006) \end{aligned}$
Taught MTH209 previously	$\begin{gathered} 0.0146 \\ (0.0154) \end{gathered}$	$\begin{gathered} 0.0144 \\ (0.0130) \end{gathered}$	$\begin{gathered} -0.0135 \\ (0.0536) \end{gathered}$	$\begin{aligned} & 0.0809^{*} \\ & (0.0487) \end{aligned}$	$\begin{gathered} 0.0154 \\ (0.0117) \end{gathered}$
Times taught MTH209	$\begin{gathered} 0.0015 \\ (0.0010) \end{gathered}$	$\begin{aligned} & 0.000885 \\ & (0.0008) \end{aligned}$	$\begin{aligned} & 0.00104 \\ & (0.0047) \end{aligned}$	$\begin{gathered} 0.00904^{* *} \\ (0.0044) \end{gathered}$	$\begin{aligned} & -0.00003 \\ & (0.0008) \end{aligned}$
Years since first hire date	$\begin{gathered} 0.0023 \\ (0.0158) \end{gathered}$	$\begin{aligned} & -0.00468 \\ & (0.0160) \end{aligned}$	$\begin{gathered} 0.0192 \\ (0.0475) \end{gathered}$	$\begin{gathered} 0.0382 \\ (0.0564) \end{gathered}$	$\begin{gathered} 0.0227 \\ (0.0161) \end{gathered}$
First hire more than one year ago	$\begin{gathered} 0.0167 \\ (0.0121) \end{gathered}$	$\begin{gathered} 0.0167 \\ (0.0115) \end{gathered}$	$\begin{gathered} 0.0844 * * * \\ (0.0320) \end{gathered}$	$\begin{gathered} -0.0012 \\ (0.0329) \end{gathered}$	$\begin{gathered} 0.0014 \\ (0.0107) \end{gathered}$

Notes: Section mean residuals are regressed on teaching experience, instructor fixed effects, and year and month fixed effects. Sample restricted to 18,409 sections (5970 for test scores) taught by instructors hired since 2002. First stage model include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses.

Table 10. Correlates of Instructor Salary
All sections, faculty hired since 2002

	Total Salary Paid for MTH208 Section (\$1,000) (mean = 1.077)				
	(1)	(2)	(3)	(4)	(5)
Section-level mean residual for MTH209 grade	-0.00521	0.00331	0.00642	0.00654	0.00648
	(0.00567)	(0.00475)	(0.00460)	(0.00437)	(0.00437)
Years since first hire date		0.02950***	0.02737***	0.04439***	0.04592***
		(0.00139)	(0.00137)	(0.00432)	(0.00442)
First hire more than one year ago		0.01049***	0.00768**	0.00599	0.00537
		(0.00368)	(0.00352)	(0.00368)	(0.00379)
Total sections taught previously		0.00051***	0.00047***	0.00006	
		(0.00012)	(0.00011)	(0.00015)	
Taught MTH208 previously					0.00221
					(0.00353)
Times taught MTH208					-0.00056**
					(0.00026)
Times taught MTH209					0.00014
					(0.00028)
Times taught other math courses					-0.00014
					(0.00030)
Times taught nonmath courses					0.00015
					(0.00020)
Constant	1.03775	0.91904	0.90719	0.95343	0.95072
	(0.00351)	(0.00734)	(0.00719)	(0.01255)	(0.01273)
R-squared	0.26521	0.53594	0.56478	0.71340	0.71372
Fixed effects	None	None	Campus	Instructor	Instructor

Notes: Sample restricted to 18,080 sections taught by instructors hired since 2002 .All specifications also include year and month fixed effects. Section-level residuals include the full set of individual and section controls and campus fixed effects, imputing zero MTH209 grades for students that did not enroll. Robust standard errors clustered by instructor in parentheses.

Appendix A - Additional Tables and Figures

Table A1a. Descriptive Statistics for Sections and Instructors (Test Score Sample)

	$\begin{aligned} & \hline \text { All sectios } \\ & (n=7,267) \end{aligned}$		Face-to-Face sections$(n=4,707)$		Online sections$(n=2,560)$	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Online section	0.352	0.478	0.000	0.000	1.000	0.000
Male	0.683	0.465	0.699	0.459	0.656	0.475
White	0.641	0.480	0.633	0.482	0.652	0.476
Section-average student age	34.37	3.35	33.70	3.48	35.60	2.72
Section-average share male	0.38	0.18	0.41	0.19	0.32	0.14
Section-average incoming GPA	3.20	0.21	3.18	0.22	3.23	0.17
Section-average incoming credits	24.53	7.15	25.20	7.77	23.30	5.65
Section-average repeat 208	0.11	0.11	0.09	0.10	0.15	0.10
Section-average number times taken	1.12	0.13	1.10	0.12	1.16	0.13
Section-average time since program start (years)	1.23	0.52	1.20	0.51	1.30	0.53
Section enrollment	13.04	4.28	12.70	5.16	13.66	1.60
Years since first hire	6.271	5.008	5.908	5.450	6.939	3.987
Years since first hire > 1	0.832	0.374	0.802	0.399	0.887	0.317
Total math 208 sections taught prior to this section	19.661	20.900	13.704	15.689	30.615	24.542
Ever taught MTH208 prior to this section	0.937	0.244	0.911	0.285	0.984	0.126
Total sections instructor taught prior to this section	59.854	66.590	58.833	75.495	61.733	45.869
Total MTH209 sections taught prior to this section	14.014	16.765	13.139	15.680	15.621	18.490
Ever taught MTH209 prior to this section	0.805	0.396	0.896	0.306	0.639	0.480

Table A1b. Descriptive Statistics for Students (Test Score Sample)

	$\begin{aligned} & \hline \text { All sections } \\ & (n=94,745) \end{aligned}$		$\begin{aligned} & \hline \text { Face-to-Face sections } \\ & \quad(\mathrm{n}=59,787) \end{aligned}$		Online sections$(\mathrm{n}=34,958)$	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Male	0.384	0.486	0.419	0.493	0.323	0.468
Age	34.319	9.411	33.570	9.300	35.601	9.460
Baseline GPA (0-4)	3.206	0.576	3.195	0.565	3.227	0.594
Credits earned prior to start of Math 208	24.533	17.534	25.256	16.690	23.296	18.827
Took Math 208 before	0.112	0.316	0.089	0.285	0.152	0.359
Number of times MTH 208 taken	1.124	0.407	1.103	0.360	1.160	0.475
BS (general studies)	0.164	0.371	0.159	0.366	0.173	0.378
BS in Nursing	0.044	0.206	0.017	0.131	0.090	0.287
BS in Accounting	0.009	0.094	0.005	0.071	0.015	0.123
BS in Business	0.382	0.486	0.467	0.499	0.236	0.425
BS in Criminal Justice Administration	0.100	0.300	0.124	0.330	0.058	0.234
BS in Education	0.028	0.166	0.013	0.115	0.054	0.226
BS in Health Administration	0.091	0.288	0.092	0.288	0.090	0.287
BS in Human Services	0.044	0.204	0.036	0.186	0.057	0.232
BS in Information Technology	0.043	0.203	0.046	0.210	0.038	0.191
BS in Management	0.055	0.228	0.027	0.162	0.103	0.304
Non-degree program	0.013	0.114	0.003	0.056	0.031	0.172
BS in other Program	0.025	0.155	0.009	0.095	0.051	0.221
Time since program start date (years)	1.234	1.596	1.197	1.425	1.297	1.850
Grade in Math 208	2.385	1.361	2.405	1.324	2.352	1.422
A / A-	0.283	0.451	0.275	0.447	0.296	0.457
$\mathrm{B}+$ / B / B-	0.277	0.448	0.283	0.451	0.267	0.442
$\mathrm{C}+/ \mathrm{C} / \mathrm{C}-$	0.189	0.392	0.203	0.402	0.167	0.373
D+ / D / D-	0.092	0.289	0.099	0.299	0.080	0.272
F	0.052	0.221	0.050	0.217	0.055	0.227
Withdrawn	0.106	0.308	0.090	0.286	0.135	0.342
Passed Math 208	0.842	0.365	0.861	0.346	0.810	0.392
Math 208 Final exam score available	0.854	0.354	0.894	0.308	0.785	0.411
Math 208 final exam \% correct (if available)	0.707	0.241	0.696	0.246	0.728	0.230
Took Math 209	0.779	0.415	0.833	0.373	0.686	0.464
Grade in Math 209 (if took it)	2.467	1.249	2.524	1.187	2.347	1.361
A/A-	0.265	0.442	0.265	0.442	0.265	0.441
$\mathrm{B}+$ / B / B-	0.296	0.457	0.307	0.461	0.273	0.445
$C+/ C / C-$	0.220	0.414	0.233	0.423	0.192	0.394
D+ / D / D-	0.102	0.302	0.107	0.309	0.091	0.288
F	0.040	0.195	0.031	0.174	0.057	0.232
Withdrawn	0.067	0.250	0.049	0.215	0.105	0.306
Math 209 Final exam score available	0.670	0.470	0.758	0.428	0.518	0.500
Math 209 final exam \% correct (if available)	0.690	0.245	0.691	0.243	0.688	0.251
Credits earned in following year	10.947	5.348	11.561	5.078	9.897	5.628
Have course evaluation	0.369	0.483	0.342	0.474	0.416	0.493
Course evaluation: Recommend instructor	0.661	0.473	0.694	0.461	0.614	0.487

Table A2. How much switching is there between online and FTF campuses?
Number of MTH2O8 faculty by online and FTF participation

	Total FTF campuses taught at					
	0	1	2	3	4	Total
	0	1,498	110	10	1	1,619
Never online	0	126	14	3	0	677
Taught online	534	126	124	13	1	2,296

Table A3. Correlation across Outcomes (Restricted to Test Sample)
All models include full controls in first stage, impute zero MTH209 grade if missing, impute 10th ptile of test score if missing.

All sections, restricted to test and evaluations sample ($\mathrm{N}=7,135$ sections)								
	Test	Test	Grade	Grade	Credits	Pass	Take	Good eval
	MTH208	MTH209	MTH208	MTH209	earned 6mo	MTH208	MTH209	MTH208
Test MTH208	1.00							
Test MTH209	0.57	1.00						
Grade MTH208	0.53	0.27	1.00					
Grade MTH209	0.30	0.30	0.51	1.00				
Credits earned 6 mo	0.23	0.08	0.40	0.47	1.00			
Pass MTH208	0.39	0.13	0.83	0.43	0.54	1.00		
Take MTH209	0.13	0.01	0.38	0.63	0.52	0.51	1.00	
Good evaluation in MTH208	0.11	-0.04	0.38	0.21	0.17	0.35	0.14	1.00
FTF sections, restricted to test and evaluations sample ($\mathrm{N}=4,581$ sections)								
	Test	Test	Grade	Grade	Credits	Pass	Take	Good eval
	MTH208	MTH209	MTH208	MTH209	earned 6mo	MTH208	MTH209	MTH208
Test MTH208	1.00							
Test MTH209	0.61	1.00						
Grade MTH208	0.54	0.35	1.00					
Grade MTH209	0.34	0.31	0.60	1.00				
Credits earned 6 mo	0.35	0.12	0.46	0.47	1.00			
Pass MTH208	0.39	0.19	0.79	0.50	0.60	1.00		
Take MTH209	0.10	0.03	0.34	0.64	0.51	0.49	1.00	
Good evaluation in MTH208	0.07	-0.03	0.31	0.21	0.14	0.27	0.06	1.00
Online sections, restricted to test and evaluations sample ($\mathrm{N}=2,554$ sections)								
	Test	Test	Grade	Grade	Credits	Pass	Take	Good eval
	MTH208	MTH209	MTH208	MTH209	earned 6mo	MTH208	MTH209	MTH208
Test MTH208	1.00							
Test MTH209	0.06	1.00						
Grade MTH208	0.43	-0.30	1.00					
Grade MTH209	0.23	0.30	0.18	1.00				
Credits earned 6mo	0.23	-0.06	0.54	0.56	1.00			
Pass MTH208	0.39	-0.32	0.91	0.20	0.62	1.00		
Take MTH209	0.28	-0.12	0.53	0.71	0.66	0.59	1.00	
Good evaluation in MTH2O8	0.37	-0.15	0.66	0.19	0.35	0.63	0.42	1.00

Notes: Random effects models are estimated on section-level residuals one outcome at a time. Tables show pair-wise correlations between predicted BLUPs for random instructor effects for each pair of outcomes. First stage models include instructor, campus, year, and month fixed effects in addition to individual controls, section average controls, and ZIP code controls. Residuals are taken with respect to all these variables other than instructor fixed effects. Individual controls include male, age, incoming GPA, incoming credits, indicator for repeat MTH208, number of times taking MTH208, 12 program dummies, years since started program. Section average controls include section averages of these same characteristics plust total enrollment in section. ZIP controls include the unemployment rate, median family income, percent of families below poverty line, percent of adults with BA degree in ZIP code from 2004-2007 ACS (plus missing ZIP). Students who did not enroll in MTH209 were assigned a zero (failing) and students that did not possess a test score for 208 or 209 were assigned the 10th percentile of the test score from their 208 section. Robust standard errors clustered by instructor in parentheses.

Appendix B - Final Exam Score Determination

For sections from July 2010 to March 2014, we have detailed information on student performance separately by course assignment or assessment, which includes everything from individual homework assignments to group exercises to exams. We use this data to obtain a final exam score for each student when available. Because the data does not have a single, clear code for final exam component across all sections, and instructors have discretion to add additional final exam components, we use a decision rule to identify the "best" exam score for each student based on the text description of the assessment object.

Ideally, this measure would capture computer-administered tests, since instructors do not have discretion over these. We therefore define a quality measure, ranging from 1 (best) to 4 (worst), that indicates how clean we believe the identification of these test scores to be. Once a student in a certain section gets assigned a test score, it is marked and not considered in later steps, so students get assigned a single quality measure and the assigned test score is of the highest quality available

Group 1 consists of the computer-administered common assessments available to all UPX instructors. To identify these assessments, we flag strings that contain words or phrases associated with the computer testing regime (e.g., "Aleks", "MyMathLab" or "MML") as well as words or phrases indicating a final exam (e.g., "final exam," "final examination," "final test"). If a student has an assessment that meets these criteria, we use the score from this assessment as the student's final exam score. ${ }^{1}$ Specifically, we use the fraction of test items answered correctly as our measure of student performance. Roughly 11% of student-sections in our test score subsample have a final exam score with this highest level of quality, both for Math 208 and Math 209 test scores.

Some students have a single assessment with a word or phrase indicating a final exam (e.g., "final exam," "final examination," "final test"), but no explicit indication that the exam was from the standardized online system. If the assessment does not contain any additional words or phrases indicating that the test was developed by the instructor (e.g., "in class", "instructor generated," etc.), we are reasonably confident that it refers to the standardized online system. Hence, we use this assessment score as the student's final exam, but we consider these assessments as Group 2 for the purpose of exam quality. Another 77 percent of student-sections fall into this category for the Math 208 and Math 209 sections.

The third group looks at strings such as "test", "quiz", and "course exam". While quizzes and tests may sometimes refer to weekly refresher assessments, these strings identify final test scores

[^17]reasonably well after having considered decision rules 1 and 2 . About 9% of the student-sections fall into this category for both section types. The fourth and final group selects a grade component as a final test score if the title includes both "class" and "final". Another 2 percent of the sample gets assigned a test score of this quality for both the Math 208 and Math 209 sections.

[^0]: ${ }^{1}$ Much of this evidence is reviewed in Ehrenberg (2012).

[^1]: ${ }^{2}$ This description draws on numerous conversations between the research team and individuals at the University of Phoenix.

[^2]: ${ }^{3}$ There have been recent reductions in the use of learning team interactions in the past two years, but these changes occurred after our analysis sample.
 ${ }^{4}$ The posting requirements actually changed over time - for the majority of the time of the study, the requirement was four days a week, two substantive posts per day (i.e., eight posts). In the past several years, it went to six times per week, on at last three days (effectively, allowing for two single post days).

[^3]: ${ }^{5}$ For MTH/208 sections, for instance, a minimum requirement might be having a master's degree in mathematics, or a master's degree in biology, engineering or similar coursework, along with a minimum number of credits in advanced mathematics courses and teaching experience in mathematics.
 ${ }^{6}$ For instance, all else equal, instructors with a Ph.D. can expect a higher salary than instructors with a master's degree. Additionally, tenure in this context refers to the date of first hire at the University of Phoenix. Salary differences are larger among new instructors, and tend to diminish at higher levels of experience.

[^4]: ${ }^{7}$ The administrative records are not available before 2000 because of information infrastructure differences, leading to incomplete teaching and course-taking spells for professors and students respectively.
 ${ }^{8}$ There are more than 200 physical locations corresponding to these 84 campuses because some have multiple physical locations (branches).
 ${ }^{9}$ This instructor dataset also contains information on birth year and military affiliation. These variables, however, have high non-response rates and are therefore not used for the analysis.

[^5]: ${ }^{10}$ The instructor identifier is, in principle, unique. It is possible, however, that an instructor shows up under two different identifiers if the instructor leaves the university and then returns after a long time. While this is a possibility, UPX administrators considered this unlikely to be a pervasive issue in their records.
 ${ }^{11}$ Similar to the instructor dataset, demographic data are self-reported. While information on gender and age is missing for less than 1% of the sample, information on ethnicity, veteran status, and transfer credits exhibit much larger non-response rates and are therefore not used for the analysis.

[^6]: ${ }^{12}$ We keep students with grades A-F, I/A-I/F (incomplete A-F) or W (withdraw). Roughly 0.1% of scores are missing or not A-F or I/A-I/F (incomplete), and we drop these. These grades include AU (audit), I (incomplete), IP, IX, OC, ON, P, QC and missing values.

[^7]: ${ }^{13}$ There are three instructors that are first employed part-time and then employed full-time. As the part-time spells are longer than the full-time spells, we use the part-time demographics only. This restriction only impacts the employment type and date of first hire, as the other demographics are the same for the two employment spells for all three instructors.
 ${ }^{14}$ The earnings measures are deflated using the national CPI. For each year, the CPI in April was used, with April 2001 as the base.

[^8]: ${ }^{15}$ Conditional on taking Math 209, both online and FTF students typically take this class about a week after the Math 208 section.

[^9]: ${ }^{16}$ An alternate approach would be to regress each student characteristic on a full set of course section dummies along with campus (or campus-year) fixed effects, and test whether the dummies are jointly equal to zero. This is equivalent to jointly testing the equality of the means of the characteristics across class sections.

[^10]: ${ }^{18}$ Second stage models are estimated with maximum likelihood using Stata's "mixed" command. To ensure that estimated variances are positive, this routine estimates the \log of the standard deviation of random effects as the unknown parameter during maximization. Standard errors of this transformed parameter are computed using the inverse of the numerical Hessian, then converted back to standard deviation units.
 ${ }^{19}$ All models also include a constant and an indicator for one of the outcomes to adjust for mean differences in residuals across outcomes, which is most relevant when we estimate the model separately by mode of instruction.

[^11]: ${ }^{20}$ Since exams differ in maximum point values across sections and for MTH208 and MTH209, the outcome is the fraction of points earned (out of the maximum). This fraction is then standardized to mean zero and standard deviation one for the individuals with scores across the entire sample.

[^12]: ${ }^{21}$ These specifications all include correlated section shocks across outcomes, though they are not reported in the table. Excluding section shocks makes the instructor effects more positively correlated across outcomes.
 ${ }^{22}$ There are approximately 200 physical locations included in the sample, in contrast to the 75 campuses.

[^13]: ${ }^{23}$ There is the additional complication that it is not entirely clear how missing evaluations should be imputed. In contrast, we are comfortable assuming that students with missing final exam scores (because they dropped out) are likely to have received low exam scores had they taken the exam.

[^14]: ${ }^{24}$ These correlation matrices are formed by predicting the BLUP instructor effects for different outcomes one at a time and correlating these using section-level data. It would be more efficient to estimate all the effects and the correlations simultaneously as we did for pairs of outcomes (e.g. grades in MTH208 and MTH209 in Table 3), but these models did not converge. Consequently, these models do not include section-specific shocks that correlate across outcomes. Thus the correlations reported in Table A3 differ from those in Table 3. Correlations are quite similar for the full sample.

[^15]: ${ }^{25}$ Approximately one quarter of the sections are taught by instructors that have taught MTH208 more than 20 times previously. Nine percent have not previously taught MTH208.

[^16]: ${ }^{26}$ It is possible that noise in our estimates of section-specific effectiveness attenuates our estimate of the relationship between effectiveness and pay. We are currently examining this issue, though we note that a finding of no relationship is consistent with the institution's stated pay policy.

[^17]: ${ }^{1}$ In extremely rare cases (less than 4 percent of the sample), students will have more than one assessment that meets these criteria, in which case we sum the attained and maximal score for these components, and calculate the percentage score. This is, in part, because for many cases, there was no grade component that could be clearly identified as the test score (e.g. a student may have "Aleks final exam: part 1" and "Aleks final exam: part 2"). About 3.75% of these cases have two assessments that meet the criteria. The maximum number of components for a student is five.

